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Abstract

Fractional programming (FP) refers to a class of optimization problems with ratio
term(s) as a main component. This article provides a perspective on some recent
advances in the algorithm development for FP, as well as the application of FP to
power control for communications system design. The main focus of this article
is a recently developed technique called quadratic transform for tackling multiple-
ratio FP problems—in contrast to classic FP techniques that are typically limited
to the single-ratio case. Multiple-ratio problems are important for the optimization
of communication networks, because system-level design in communications and
networking often involves multiple signal-to-interference-plus-noise ratios (SINRs).
Moreover, we survey some recent theoretical advances in quadratic transform.

1 Introduction

Fractional programming (FP) refers to a class of optimization problems containing
ratio terms. Its history can be traced back to an early paper on economic expansion
[Neu] by John von Neumann in the 1930’s; it has since inspired extensive study in
broad areas of economics, management science, information theory, optics, graph
theory, and computer science [Sta, Baj].

The aim of this article is to provide a perspective on the recent develop-
ment of a new technique for solving FP problems in [SY1] and its applications to
communication system design, in particular to the important problem of power
control for wireless systems. Although an extensive prior literature already exists
for FP, most of them are applicable only to single-ratio problems. For example,
early works on FP for communications system design [ZaJ, IC+], which rely on
the classical techniques of Charnes-Cooper algorithm [ChC, Sch] and Dinkelbach’s
algorithm [Din], have had to limit the system models to scenarios involving only
one single ratio. However, modern system-level communication network design of-
ten involves multiple ratios, because the overall system performance is typically a
function of multiple fractions—such as the signal-to-interference-plus-noise ratios
(SINRs) of multiple interfering links. Yet, because the multiple-ratio FP problem
is NP-hard [Cro], the prior works [Ben, Kun, PhT] on multiple-ratio FP mostly
resort to the branch-and-bound algorithms, which have exponential complexity.
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This article considers the multiple-ratio FP from a new perspective using
techniques first proposed in [SY1, SY2]. The main theoretic contribution of [SY1]
is a novel technique called the quadratic transform that introduces a set of suit-
able auxiliary variables, then recasts the original problem to a form amenable
to iterative optimization. Specifically, this new technique decouples the numera-
tor and the denominator of each ratio term, similar to the classical Dinkelbach’s
transform [Din], but works with multiple ratios as opposed to (almost exclusively)
single-ratio problems for the classic method. This decoupling feature of the newly
proposed quadratic transform is particularly suited for coordinating the SINRs
across multiple interfering links in wireless networks.

2 FP Problems

2.1 Single-Ratio FP

We start with the simplest case of FP, the single-ratio problem. Consider a pair of
nonnegative function A(x) ≥ 0 and strictly positive function B(x) > 0, where the
variable x is restricted to a nonempty constraint set X . Assume also that A(x)
and B(x) are both differentiable. The single-ratio problem is defined to be

maximize
x

A(x)

B(x)

subject to x ∈ X .
(2.1)

In the FP literature, A(x) is often assumed to be a concave function, while B(x)
is assumed to be convex; further, X is assumed to be a convex set. This set of
additional assumptions are called the concave-convex condition. It turns out that
the concave-convex condition is satisfied in many applications of FP. Note that the
objective in (2.1) remains nonconcave, even under the concave-convex condition.

The difficulty in numerically solving the problem (2.1) is mainly due to the
coupling between the numerator A(x) and the denominator B(x); so a natural idea
is to decouple the ratio. The classic Dinkelbach’s algorithm [Din] accomplishes this
by rewriting the problem (2.1) as

maximize
x

A(x)− yB(x)

subject to x ∈ X
(2.2)

with an auxiliary variable y ∈ R, which is iteratively updated as

y(t+1) =
A(x(t))

B(x(t))
, (2.3)

where t is the iteration index. For fixed y, the objective function of the new
problem (2.2) is concave in x under the concave-convex condition, hence (2.2)
can be efficiently solved by standard methods. As shown in [Din], the alternating
steps between the convex optimization of x in (2.2) and the update of y in (2.3)
guarantees convergence to a global optimum of the original problem (2.1).
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Another classic method called the Charnes-Cooper algorithm [ChC, Sch] also
seeks to decouple the ratio while convexifying the problem (2.1), albeit in a com-
pletely different way.

2.2 Multiple-Ratio FP

A natural extension of the single-ratio problem is the sum-of-ratios problem:

maximize
x

n∑
i=1

Ai(x)

Bi(x)

subject to x ∈ X ,
(2.4)

where each Ai(x) ≥ 0 and each Bi(x) > 0. The concave-convex condition can
be extended accordingly: each Ai(x) is concave, each Bi(x) is convex, and X is
a convex set. Unfortunately, neither the Dinkelbach’s algorithm [Din] nor the
Charnes-Cooper algorithm [ChC, Sch] can be extended for the sum-of-ratios prob-
lem (2.4). It is tempting to decouple each ratio Ai(x)/Bi(x) individually as in (2.2)
by using an auxiliary variable yi, but the resulting new problem is not equivalent
to the original problem. This is to say:

maximize
x∈X

n∑
i=1

Ai(x)

Bi(x)
⇐⇒/ maximize

x∈X

n∑
i=1

(
Ai(x)− yiBi(x)

)
,

where each yi is iteratively updated as Ai(x)/Bi(x).
The reason why Dinkelbach’s algorithm fails to work for problems involv-

ing multiple ratios is that it is not an embedding of A(x)/B(x) into a higher
dimensional function g(x, y). To explain this more precisely, let us temporarily
restrict attention to the single-ratio problem (2.1). Ideally, we would like to have
a ratio-decoupling transformation g(x, y) that satisfies the following:

C1: (Decoupling) The new objective has the form g(x, y) = Z1(A(x))Q1(y) +
Z2(B(x))Q2(y), where Z1(·), Z2(·) and Q1(·), Q2(·) are some scalar functions,
and y is an auxiliary variable.

C2: (Same Solution) Let y? = argmaxyg(x, y) for each x. An optimal x? that
maximizes A(x)/B(x) along with its corresponding y? should also be a max-
imizer of g(x, y).

C3: (Same Objective Value) For any x ∈ X along with the corresponding maxi-
mizer y?, we have g(x, y?) = A(x)/B(x).

All of the above goals are well-motivated. C1 stems from the classic Dinkelbach’s
algorithm that decouples A(x) and B(x) through y; C2 ensures that the new
problem is equivalent to the original problem in terms of the optimal optimization
variable after ratio decoupling; C3 imposes a stronger equivalence between the
new problem and the original problem, as motivated by multiple-ratio problems
where multiple objective values are added together.

The issue is that the Dinkelbach’s algorithm [Din] is not an embedding that
satisfies C2–C3. Specifically, the choice of y? = A(x)/B(x) in Dinkelbach’s al-
gorithm gives g(x, y?) = 0. This is the fundamental reason that Dinkelbach’s
algorithm cannot be applied to the sum-of-ratios problem.
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Figure 1: Let the optimizing variable x ∈ Rd. The original FP objective
A(x)/B(x) : Rd → R is nonconcave. The quadratic transform in (2.5) embeds
the original objective in a higher dimension as g : Rd+1 → R, which is concave in
x for each y, and concave in y for each x. An example of x/(x4 + 1) is shown.

In contrast, the quadratic transform as developed in [SY1] satisfies all of C1–
C3. Furthermore, we envision an algorithm for iterative updating of x and y. To
facilitate the maximization over y for each fixed x, we further impose the following
condition that would allow y to be efficiently updated via convex optimization:

C4: (Concavity) The new objective g(x, y) is a smooth concave function of y for
fixed x, i.e., ∂2g/∂y2 ≤ 0,

These four conditions C1–C4 give rise to the quadratic transform.

Theorem 2.1 (Quadratic Transform) The quadratic transform

g(x, y) = 2y
√
A(x)− y2B(x) (2.5)

satisfies C1–C4. Further, if C4 is strengthened to require ∂2g/∂y2 to be indepen-
dent of y, then any g(x, y) satisfying C1–C4 must be of the form

g(x, y) = 2(t1y + t2)
√
A(x)− (t1y + t2)2B(x), (2.6)

for some t1 6= 0 and t2 ∈ R. Thus, the quadratic transform (2.5) is the only
possible such transformation, up to an affine transformation in y.

From a geometric perspective, the quadratic transform embeds the original
objective function A(x)/B(x) into a higher dimensional space by introducing an
auxiliary variable y. The new objective g(x, y) is now concave in each of x and
y separately, and thus is easier to optimize, as illustrated in Figure 1. This is
reminiscent of the idea of lift and project in semidefinite programming relaxation.
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We can now apply the quadratic transform to the sum-of-ratios problem and
recast (2.4) as

maximize
x,y

n∑
i=1

(
2yi
√
Ai(x)− y2iBi(x)

)
subject to x ∈ X , yi ∈ R, i = 1, . . . , n,

(2.7)

where an auxiliary variable yi is introduced for each ratio Ai(x)/Bi(x), and y
denotes the vector of auxiliary variables (y1, . . . , yn).

The above result can be generalized further. Consider a sequence of non-
decreasing differentiable concave functions fi : R → R, for i = 1, . . . , n. The
sum-of-functions-of-ratios problem is the following:

maximize
x

n∑
i=1

fi

(
Ai(x)

Bi(x)

)
subject to x ∈ X .

(2.8)

Clearly, problem (2.4) is a special case of the problem (2.8). By the quadratic
transform, (2.8) can be recast as

maximize
x,y

n∑
i=1

fi

(
2yi
√
Ai(x)− y2iBi(x)

)
subject to x ∈ X , yi ∈ R, i = 1, . . . , n.

(2.9)

Algorithmically, the quadratic transform allows the optimization of x and y
in an alternating fashion. When x is held fixed, each yi can be determined as

yi =

√
Ai(x)

Bi(x)
. (2.10)

When y is held fixed, the new objective function in (2.9) is concave in x under the
concave-convex condition. Thus, the original nonconvex problem is turned into a
sequence of convex optimizations. The following theorem analyzes the convergence.

Theorem 2.2 (Convergence Analysis) For the sum-of-functions-of-ratios prob-
lem (2.8) under the concave-convex condition, the alternating optimization between
x and y in the new problem (2.9) guarantees convergence to a stationary point of

the problem (2.8). Moreover, the primal objective value
∑n

i=1 fi
(Ai(x)
Bi(x)

)
is nonde-

creasing after each iteration.

We remark that the convergence condition stated in the above theorem is
milder than that of the block coordinate descent (BCD) method [Ber]. Observe
that the alternating optimization between x and y in (2.9) can be thought of as
BCD. As shown in [Ber], the BCD method guarantees convergence to a stationary
point, but it requires the subproblem for each iterate to have a unique solution.
This is true, e.g., when each Ai(x) is strictly concave and each Bi(x) is strictly
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convex. In contrast, the above theorem asserts that the concave-convex condition
alone is already sufficient without requiring strict convexity. The reason is that the
quadratic transform has a minorization-maximization (MM) interpretation, which
has a weaker convergence condition as discussed in [SY+].

3 Application to Wireless Power Control

This section shows how the quadratic transform can be useful in communications
system design. Specifically, we focus on the wireless power control problem, which
contains multiple SINRs of interfering links. We illustrate how the quadratic
transform can be performed in different ways and compare their performances.

3.1 Problem Statement

Consider n wireless links that use the same spectrum band. Use i or j = 1, . . . , n
to index the link. Denote by Gii ∈ (0, 1) the direct channel attenuation of link i,
Gij ∈ (0, 1) the interference channel attenuation from link j to link i for j 6= i, pi
the transmit power of link i, and σ2 the background Gaussian noise power. The
SINR of link i, denoted as Γi, is given by

Γi =
Giipi

σ2 +
∑n

j=1,j 6=iGijpj
. (3.1)

With interference treated as noise, we can evaluate the data rate of each link
i by Shannon’s capacity formula log(1 + Γi). Moreover, a nonnegative weight
ωi ≥ 0 is assigned to each link i in accordance with its priority. Assuming that
the parameters {Gii, Gij , σ

2, ωi} are fixed and known, the power control problem
seeks the optimal power vector p = (p1, . . . , pn) that maximizes a weighted sum
rate:

maximize
p

n∑
i=1

ωi log(1 + Γi)

subject to 0 ≤ pi ≤ P, i = 1, . . . , n,

(3.2)

where P is a given power constraint. The power control problem (3.2) is a well-
known difficult problem, due to the nonconcavity of the objective function.

3.2 Direct Quadratic Transform

Observing that each SINR term Γi satisfies the concave-convex condition and also
that Γi is nested in a nondecreasing function fi(Γi) = ωi log(1+Γi), we can readily
perform the quadratic transform (2.9) to recast (3.2) as

maximize
p,y

n∑
i=1

ωi log

(
1 + 2yi

√
Giipi − y2i

(
σ2 +

n∑
j=1,j 6=i

Gijpj

))
subject to 0 ≤ pi ≤ P, yi ∈ R, i = 1, . . . , n.

(3.3)



A Perspective on Fractional Programming for Communications System Design 7

We propose to optimize p and y alternately in the new problem. For fixed p, each
yi is optimally determined as

y?i =

√
Giipi

σ2 +
∑n

j=1,j 6=iGijpj
. (3.4)

For fixed y, optimizing p in (3.3) is a convex problem. The above optimization
method is summarized in Algorithm 1. By Theorem 2.2, Algorithm 1 converges
to a stationary point of the power control problem (3.2).

Algorithm 1 Direct Quadratic Transform for Power Control

1: repeat
2: Solve for p in the new problem (3.3) by the standard method
3: Update y according to (3.4)
4: until the convergence criterion is satisfied

Algorithm 1 requires numerically solving a convex subproblem in each iter-
ation. It would be desirable to optimize p in closed form. Toward this end, we
propose another way to apply the quadratic transform in the next section.

3.3 Closed-Form Quadratic Transform

In [SY2], a Lagrangian dual transform is proposed to “move” the ratios to the
outside of logarithms in (3.2), so as to rewrite (3.2) equivalently as

maximize
p,γ

n∑
i=1

ωi log(1 + γi)−
n∑

i=1

ωiγi +

n∑
i=1

ωi(1 + γi)Giipi
σ2 +

∑n
j=1Gijpj

subject to 0 ≤ pi ≤ P, γi ≥ 0, i = 1, . . . , n,

(3.5)

where an auxiliary variable γi is introduced for each ratio, and γ = (γ1, . . . , γn).
For fixed p, each γi is optimally determined as

γ?i =
Giipi

σ2 +
∑n

j=1,j 6=iGijpj
. (3.6)

The optimization of p for fixed γ is an FP. As only the last term of the new
objective contains p, the optimization of p in (3.5) boils down to a sum-of-ratios
problem. By the quadratic transform, problem (3.5) is further converted to

maximize
p,γ,y

n∑
i=1

ωi log(1 + γi)−
n∑

i=1

ωiγi

+

n∑
i=1

[
2yi
√
ωi(1 + γi)Giipi − y2i

(
σ2 +

n∑
j=1

Gijpj

)]
subject to 0 ≤ pi ≤ P, γi ≥ 0, yi ∈ R, i = 1, . . . , n.

(3.7)
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Figure 2: Maximizing the sum of downlink data rates across 7 cells in a wireless
cellular network using different methods.

For fixed p and γ, the optimal update of each yi is

y?i =

√
ωi(1 + γi)Giipi

σ2 +
∑n

j=1Gijpj
. (3.8)

For fixed γ and y, the optimal update of each pi is

p?i = min

P, ωi(1 + γi)y
2
iGii(∑n

j=1 y
2
jGji

)2
 . (3.9)

Thus all the variables are now optimized in closed form, as summarized in Algo-
rithm 2.

Algorithm 2 Closed-Form Quadratic Transform for Power Control

1: repeat
2: update γ according to (3.6)
3: update y according to (3.8)
4: update p according to (3.9)
5: until the convergence criterion is satisfied

Figure 2 shows the convergence behaviors of the various power control al-
gorithms in a 7-cell wrapped-around simulation environment with one user per
cell. Here, we aim to maximize the sum of downlink data rates in a typical wire-
less cellular network. We use Newton’s method and the SCALE algorithm [PaE]
as benchmarks. Observe that the two FP algorithms have faster convergence as
compared to the benchmarks.
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4 Recent Advances

The past few years have witnessed considerable further theoretical developments
in the quadratic transform along the following three directions:

• Minimization FP: The FP problem considered so far is limited to maxi-
mization of fractions. If we replace max by min, or place the ratios inside
nonincreasing functions, the quadratic transform no longer works. Recently,
an inverse quadratic transform [CZS] is developed to deal with minimization
FP. Further, [CZS] proposes a unified quadratic transform for general FP
problems wherein max and min coexist.

• Matrix Ratio: When the numerator function Ai(x) ≥ 0 and the denominator
function Bi(x) > 0 are generalized to be m×m matrix functions Ai(x) � 0
and Bi(x) � 0, the scalar-valued ratio can be extended to a matrix ratio as

Ai(x)

Bi(x)
∈ R ⇒ Ai(x)B−1i (x) ∈ Rm×m. (4.1)

Problem (2.4) can then be generalized to a sum-of-traces-of-matrix-ratios
problem. A matrix-ratio extension of the quadratic transform is proposed in
[SY+]. However, it requires inverting an m×m matrix in each iteration, so
its complexity can be high when m is large. The work [ZL+] suggests ways
to reduce the size of matrix under certain conditions; recently [ZZS] is able
to eliminate the matrix inverse altogether to enable efficient implementation.

• Convergence Rate Analysis and Acceleration: From an MM theoretic view-
point, [SZ+] shows that the error bound in objective value diminishes at a
rate of order O(1/k) for the quadratic transform, where k is the number
of iterates. Moreover, [SZ+] establishes a connection between the quadratic
transform and the gradient projection, based on which the heavy-ball method
can be employed to accelerate the convergence. For this accelerated quadratic
transform, its error bound can achieve a faster diminishing rate of O(1/k2).

5 Conclusion

The quadratic transform can tackle a broad range of FP problems with multiple
ratios, whereas the classic methods are limited to the single-ratio FP only. Based
on the quadratic transform, two different FP approaches are devised for solving the
power control problem in wireless communications system design. These proposed
methods recast the original nonconvex problem as a sequence of convex problems,
thereby allowing efficient iterative optimization with provable convergence to a
stationary point. Finally, various extensions of these ideas are discussed.
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