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Lemma 1. Let P = {p1, . . . , pn} ⊂ Rd be a finite set of points in d-dimensional
space. If n > d then we have, for some coefficients µ1, . . . , µn,

0 =
n∑

i=1

µipi with µ1, . . . , µn not all zero, (1)

and if n > d+ 1 we can have (1) under the additional condition that

n∑
i=1

µi = 0. (2)

In the latter case, some of µ1, . . . , µn are positive and some are negative.

Proof. The first part of the lemma follows from the fact that every set of d+ 1
or more points in a d-dimensional vector space is linearly dependent. The
second part follows from the observation that {p2− p1, p3− p1, . . . , pn− p1} is
linearly dependent, thus

0 =
n∑

i=2

µi(pi − p1) with µ2, . . . , µn not all zero.

By defining µ1 = −
∑n

i=2 µi, both (1) and (2) then hold. The only way that
(2) can hold with all non-positive or all non-negative terms would be if all
terms are zero.
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Now let P be any (not necessarily finite) set of points in Rd. The convex
hull of P , denoted Conv(P ), is the set of all convex combinations of points
of P . In other words, a point x ∈ Rd is in Conv(P ) if and only if, for some
positive integer n, and some set {p1, . . . , pn} ⊆ P , and some set of coefficients
{α1, . . . , αn} with αi ≥ 0 for all i ∈ {1, . . . , n} and

∑n
i=1 αi = 1, we have

x =
n∑

i=1

αipi.

Theorem (Carathéodory). For P ⊆ Rd, if x ∈ Conv(P ) then x ∈ Conv(P ′)
for some subset P ′ of P of cardinality at most d+ 1.

Proof. Let x be a point of Conv(P ), so that for some positive integer n

x =
n∑

i=1

αipi

with, for all i ∈ {1, . . . , n}, pi ∈ P , αi ≥ 0, and
∑n

i=1 αi = 1. If n ≤ d+1 there
is nothing to prove. Otherwise, n > d+ 1, so by Lemma 1, we have for scalars
µ1, . . . , µn (some of which are positive) that 0 =

∑n
i=1 µipi, with

∑n
i=1 µi = 0.

Now, for any real number λ, we have

x =
n∑

i=1

αipi − λ
n∑

i=1

µipi =
n∑

i=1

(αi − λµi)pi. (3)

Note that

n∑
i=1

(αi − λµi) =
n∑

i=1

αi − λ
n∑

i=1

µi =
n∑

i=1

αi − λ · 0 = 1,

i.e., the coefficients in the linear combination (3) sum to one. We will now
select λ so that one of these coefficients becomes zero, while the remaining
coefficients are positive, making (3) a convex combination of n − 1 points of
P .

Let J = {j ∈ {1, . . . , n} : µj > 0} (and note that J is not empty). Choose
j∗ ∈ J so that αj∗/µj∗ ≤ αj/µj for all j ∈ J , and let λ = αj∗/µj∗ . With this
choice of λ, we have

αi − λµi ≥ 0
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for all i ∈ {1, . . . , n}. Indeed if i ∈ J , then µi > 0 and

αi − λµi = µi(αi/µi − λ) ≥ 0,

while if i 6∈ J then µi ≤ 0, and since λ ≥ 0, we have

αi − λµi ≥ αi ≥ 0.

Finally observe that αj∗ − λµj∗ = 0, so

x =

j∗−1∑
i=1

(αi − λµi)pi +
n∑

i=j∗+1

(αi − λµi)pi,

which expresses x as a convex combination of the n − 1 elements of the set
{p1, . . . , pn} \ {pj∗}. This process can be repeated as long as n > d + 1, until
x is represented as a convex combination of d+ 1 elements of P .

Theorem (Radon). Every set of d + 2 points in Rd can be partitioned into
two sets P1 and P2 such that Conv(P1) ∩ Conv(P2) 6= ∅.

Proof. Let n = d + 2 and let P = {p1, . . . , pn} ⊆ Rd. By Lemma 1 we have
for scalars µ1, . . . , µn (some of which are positive and some of which are non-
positive) 0 =

∑n
i=1 µipi with

∑n
i=1 µi = 0.

Let J = {j ∈ {1, . . . , n} : µj > 0} and let I = {1, . . . , n} \ J . Neither J nor
I is empty. Let A =

∑
j∈J µj and note that A > 0. Then

∑
i∈I µi = −A.

Finally, let P1 = {pj : j ∈ J} and P2 = {pi : i ∈ I}.

The convex hulls Conv(P1) and Conv(P2) contain the point

p =
∑
j∈J

µj

A
xj =

∑
I∈I

−µi

A
xi

as the first sum is a convex combination of points from P1 and the second sum
is a convex combination of points from P2. Thus Conv(P1)∩Conv(P2) 6= ∅.

If P = {p1, . . . , pd+2} ⊂ Rd is partitioned into subsets P1 and P2 then a point
p ∈ Conv(P1)∩Conv(P2) is called a Radon point of P . For example, the (only)
Radon point of P = {p1, p2, p3} ⊂ R is the median of P .

Recall that a subset X of Rd is convex if it contains the convex hull of its
subsets, i.e., X is convex if Conv(Y ) ⊆ X for every Y ⊆ X. Also recall that
the intersection of two convex sets is again convex.
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Theorem (Helly). Let X1, . . . , Xn be a collection of convex subsets of Rd, with
n > d + 1. If the intersection of every d + 1 of these sets is nonempty, then
these subsets have a point in common, i.e.,

n⋂
i=1

Xi 6= ∅.

Proof. We proceed by induction on n.

Consider the base case, n = d + 2. Then the intersection of any n − 1 of the
subsets is nonempty. For each i ∈ {1, . . . , n}, let xi be a point in common to
all the subsets except (possibly) Xi. If x1, . . . , xn are not all distinct, then a
repeated element is a point in common to all subsets. Otherwise, according
to Radon’s Theorem, the set {x1, . . . , xn} can be partitioned into two subsets
P1 and P2 such that Conv(P1) and Conv(P2) have a point p in common. For
each i ∈ {1, . . . , n}, either P1 ⊂ Xi or P2 ⊂ Xi, thus, since Xi is convex, either
Conv(P1) ⊂ Xi or Conv(P2) ⊂ Xi. In either case p ∈ Xi, which establishes
that p is a point in common to all subsets, and therefore the theorem is true
in the base case.

Suppose the induction hypothesis is true for some n ≥ d+2, and letX1, . . . , Xn+1

be a collection of convex subsets of Rd with the property that the intersec-
tion of every d + 1 of them is nonempty. Note that Xn ∩ Xn+1 is a convex
subset of Rd. Consider the collection X1, . . . , Xn−1, Xn ∩ Xn+1 of n convex
subsets of Rd. Take any d+ 1 of the sets {X1, . . . , Xn−1}; then, by assumption
they have a point in common. Otherwise, take d of the sets {X1, . . . , Xn−1}
together with Xn and Xn+1. This is a collection of d + 2 convex subsets of
Rd to which the base case case applies, so they also must have a point in
common. Thus the intersection of every d + 1 of X1, . . . , Xn−1, Xn ∩ Xn+1 is
nonempty. By the induction hypothesis, these sets have a point p in com-
mon, i.e., X1 ∩ · · · ∩Xn ∩Xn+1 is nonempty, which shows that the induction
hypothesis is true for n+ 1.

Since the induction hypothesis is true for n = d + 2, and the truth of the
induction hypothesis for n ≥ d+ 2 implies its truth for n+ 1, by induction the
hypothesis is true for all n ≥ d+ 2.
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