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Lemma 1. Let P = {py,...,p,} C R? be a finite set of points in d-dimensional
space. If n > d then we have, for some coefficients p, ..., fin,

0= Zuipi with iy, . .., iy not all zero, (1)

=1

and if n > d+ 1 we can have (1) under the additional condition that

Z i = 0. (2)

In the latter case, some of i, ..., 1, are positive and some are negative.

Proof. The first part of the lemma follows from the fact that every set of d+1
or more points in a d-dimensional vector space is linearly dependent. The
second part follows from the observation that {ps — p1,ps —p1,-..,Pn —P1} 18
linearly dependent, thus

0= Zui(pi — p1) with o, ..., u, not all zero.
i=2

By defining py = — Y ., i, both (1) and (2) then hold. The only way that
(2) can hold with all non-positive or all non-negative terms would be if all
terms are zero. O



Now let P be any (not necessarily finite) set of points in R%. The convex
hull of P, denoted Conv(P), is the set of all convex combinations of points
of P. In other words, a point z € R? is in Conv(P) if and only if, for some
positive integer n, and some set {p1,...,p,} C P, and some set of coefficients
{oq,...,a,} with oy >0 forall i € {1,...,n} and " , a; = 1, we have

n
T = E Q;p;.-
i=1

Theorem (Carathéodory). For P C R?, if x € Conv(P) then x € Conv(P’)
for some subset P’ of P of cardinality at most d + 1.

Proof. Let x be a point of Conv(P), so that for some positive integer n

n
Tr = E Q;p;
=1

with, foralli € {1,...,n},p; € P,a; > 0,and >, o = 1. If n < d+1 there
is nothing to prove. Otherwise, n > d+ 1, so by Lemma 1, we have for scalars
[, - ., fn, (some of which are positive) that 0 = >"" | pp;, with > " p; = 0.

Now, for any real number \, we have

T = Z aip; — A Z pip; = Z — AWi)pi- (3)

=1

Note that

Z — M) = Z&Z—)\Zul Xn:ai—)\'O:l,
i=1

=1

i.e., the coefficients in the linear combination (3) sum to one. We will now
select A so that one of these coefficients becomes zero, while the remaining
coefficients are positive, making (3) a convex combination of n — 1 points of

P.

Let J ={j € {1,...,n} : u; > 0} (and note that J is not empty). Choose
J* € J so that ay«/p;+ < oj/p; for all j € J, and let A = ay«/p;+. With this
choice of A\, we have

a; — A >0



for all i € {1,...,n}. Indeed if i € J, then pu; > 0 and
a; — Mg = piag /s — A) >0,
while if ¢ ¢ J then u; < 0, and since A > 0, we have
a; — Mt > o > 0.

Finally observe that aj« — Apj= = 0, so

7*—=1 n
=Y (o= u)pi+ Y (o — Mua)pi,
i=1 i=j*+1

which expresses x as a convex combination of the n — 1 elements of the set
{p1,...,pn} \ {pj+}. This process can be repeated as long as n > d + 1, until
x is represented as a convex combination of d + 1 elements of P. n

Theorem (Radon). Every set of d + 2 points in R? can be partitioned into
two sets Py and Py such that Conv(P;) N Conv(Py) # ().

Proof. Let n = d+ 2 and let P = {py,...,p,} € R% By Lemma 1 we have
for scalars pq, ..., i, (some of which are positive and some of which are non-

positive) 0 = Y% | p;p; with 7 | p; = 0.

Let J={je{l,...,n}:pu; >0} and let I = {1,...,n}\ J. Neither J nor
I'is empty. Let A = . ;u; and note that A > 0. Then >, p; = —A.
Finally, let P, ={p;:j € J} and P, = {p; : i € I}.

The convex hulls Conv(P;) and Conv(P;) contain the point

jeJ Iel

as the first sum is a convex combination of points from P; and the second sum
is a convex combination of points from P,. Thus Conv(P;)NConv(P,) # 0. O

If P={pi,...,paro} C R? is partitioned into subsets P, and P, then a point
p € Conv(P;)NConv(P,) is called a Radon point of P. For example, the (only)
Radon point of P = {p;,p2, ps} C R is the median of P.

Recall that a subset X of R? is convexr if it contains the convex hull of its
subsets, i.e., X is convex if Conv(Y) C X for every Y C X. Also recall that
the intersection of two convex sets is again convex.
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Theorem (Helly). Let X1, ..., X, be a collection of convex subsets of R, with
n > d+ 1. If the intersection of every d + 1 of these sets is nonempty, then
these subsets have a point in common, i.e.,

()X # 0.
=1

Proof. We proceed by induction on n.

Consider the base case, n = d 4+ 2. Then the intersection of any n — 1 of the
subsets is nonempty. For each i € {1,...,n}, let z; be a point in common to
all the subsets except (possibly) X;. If zy,...,x, are not all distinct, then a
repeated element is a point in common to all subsets. Otherwise, according
to Radon’s Theorem, the set {z1,...,x,} can be partitioned into two subsets
P, and P, such that Conv(P;) and Conv(F;) have a point p in common. For
each i € {1,...,n}, either P, C X; or P, C X;, thus, since X is convex, either
Conv(P) C X; or Conv(P;) C X;. In either case p € X;, which establishes
that p is a point in common to all subsets, and therefore the theorem is true
in the base case.

Suppose the induction hypothesis is true for some n > d+2, and let Xy, ..., X, 11
be a collection of convex subsets of R? with the property that the intersec-
tion of every d + 1 of them is nonempty. Note that X, N X, is a convex
subset of R?. Consider the collection X7,..., X1, X, N X,41 of n convex
subsets of R%. Take any d+ 1 of the sets {X1,..., X,,_1}; then, by assumption
they have a point in common. Otherwise, take d of the sets {Xy,..., X, 1}
together with X,, and X, ;. This is a collection of d + 2 convex subsets of
R? to which the base case case applies, so they also must have a point in
common. Thus the intersection of every d + 1 of Xy,..., X, 1, X, N X, is
nonempty. By the induction hypothesis, these sets have a point p in com-
mon, i.e., X;N---N X, N X, is nonempty, which shows that the induction
hypothesis is true for n + 1.

Since the induction hypothesis is true for n = d + 2, and the truth of the
induction hypothesis for n > d + 2 implies its truth for n+ 1, by induction the
hypothesis is true for all n > d + 2. O]



