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Abstract—We investigate a two-transmitter Gaussian multiple
access wiretap channel with multiple antennas at each of
the nodes. The channel transfer matrices at the legitimate
terminals are fixed and revealed to all the terminals, whereas
the channel transfer matrix of the eavesdropper is arbitrarily
varying and only revealed to the eavesdropper. We characterize
the secrecy degrees of freedom (s.d.o.f.) region under a strong
secrecy constraint. A transmission scheme that orthogonalizes
the transmit signals of the two users at the intended receiver and
uses a single-user wiretap code is sufficient to achieve the s.d.o.f.
region. The converse involves establishing an upper bound on a
weighted-sum-rate expression. This is accomplished by using an
induction procedure, where at each step we combine the secrecy
and multiple-access constraints associated with an adversary
eavesdropping a carefully selected group of sub-channels.

I. I NTRODUCTION

While prevalent architectures for secure communication
are primarily based on cryptographic techniques [1], they
cannot address all the vulnerabilities in complex networked
systems. The area of physical layer security [2]–[4] inves-
tigates security solutions using resources at the physical
layer and compliments existing cryptographic techniques.
Furthermore the associated techniques do not rely on a com-
putationally bounded adversarial model, but instead provide
a rigorous theoretical proof of security [5] making such
techniques appealing in certain mission-critical application.

Secure communication using multiple antennas has been
extensively studied in recent times, see e.g., [6]–[14]. These
works investigate efficient signaling mechanisms using the
spatial degrees of freedom provided by multiple antennas
to limit an eavesdropper’s ability to decode information.
The underlying information theoretic problem, the multi-
antenna wiretap channel, is studied and the associated secrecy
capacity is investigated. We note that these works assume
that the eavesdropper’s channel state information is available
either completely or partially, although such an assumption
cannot be justified in practice.

More recently, [15]–[17] study secrecy capacity when the
eavesdropper channel is arbitrarily varying and its channel
states are known to the eavesdropper only. Reference [16]
studies the single-user Gaussian multi-input-multi-output
(MIMO) wiretap channel and characterizes the secrecy de-
grees of freedom (s.d.o.f.). The two user Gaussian MIMO
multiple access (MIMO-MAC) channel is also investigated

‡ The ordering of authors is alphabetical.

in [16] for the special case when all the legitimate terminals
have equal number of antennas. A time-sharing based tech-
nique is shown to be sufficient in achieving the s.d.o.f. region.
As we develop in this paper, the case of unequal number of
antennas requires a non-trivial extension of [16].

Our main contribution is to characterize the s.d.o.f. region
of the two-transmitter MIMO MAC channel when the eaves-
dropper channel is arbitrarily varying. The s.d.o.f. region can
be achieved by a scheme that orthogonalizes the transmit
signals of the two users at the intended receiver. Moreover,
it suffices to use a single-user wiretap channel code [16] and
no cooperation from the other user is necessary, except in
sharing the transmit dimensions. To establish the optimality
of this scheme, our converse proof decomposes the MIMO
MAC channel into a set of parallel and independent channels
using the generalized singular value decomposition (GSVD).
A set of eavesdroppers, each monitoring a subset of links, is
selected using an induction procedure (Definition 1) and the
resulting secrecy constraints are combined to obtain an upper
bound on a weighted sum-rate expression. The upper bound
matches the achievable rate in terms of the s.d.o.f. region,
thus settling the problem raised in [16] for the case of two
transmitters.

To the best of our knowledge the s.d.o.f. region remains
open when the eavesdropper channel is perfectly known to
all terminals. A significant body of literature already exists
on this problem. See e.g., [3], [18]–[20]. If the channel
model has real inputs and outputs, Gaussian signaling is in
general suboptimal and user cooperating strategies as well
as signal alignment techniques are necessary [21]. In [22]
it is established that s.d.o.f. of1/2 is achievable using
real interference alignment for almost all configurations of
channel gains. If the channel model has complex inputs and
outputs, it is shown in [23, Section 5.16] that in general
s.d.o.f. of 1/2 is achievable using asymmetric Gaussian
signaling. In contrast, the best known upper bound on the
s.d.o.f. of individual rates is2/3 for both cases, established
in [23, Section 5.5].

The remainder of this paper is organized as follows. In
Section II, we describe the system model. The main result is
stated as Theorem 1 in Section IV. Due to page limit, we shall
only prove the converse of Theorem 1 for the case of parallel
channels, which is given in Section V. The general case can
be easily reduced to this case through general singular value
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decomposition [24] and its proof will be given in the journal
version of this work.

We use the following notation throughout the paper: For
a setA, Vi,A and VA denote the set of random variables
{Vi,j , j ∈ A} and {Vj, j ∈ A} respectively.{δn} denotes
a non-negative sequence ofn that converges to0 when
n goes to∞. We use bold upper-case font for matrices
and vectors and lower-case font for scalars. The distinction
between matrices and vectors will be clear from the context.
For a setA, |A| denotes its cardinality and a short hand
notation xn is used for the sequence{x1, x2, . . . , xn}. φ
denotes the empty set.

II. SYSTEM MODEL

As shown in Figure 1, we consider a discrete-time channel
model where two transmitters communicate with one receiver
in the presence of an eavesdropper. We assume transmitteri
hasNTi

antennas,i = 1, 2, the legitimate receiver hasNR

antennas whereas the eavesdropper hasNE antennas. The
channel model is defined by

Y(i) =

2∑

k=1

HkXk(i) + Z(i) (1)

Ỹ(i) =
2∑

k=1

H̃k(i)Xk(i) (2)

wherei ∈ {1, . . . , n} denotes the time-index,Hk, k = 1, 2,
are channel matrices andZ is the additive Gaussian noise
observed by the intended receiver, which is composed of
independent rotationally invariant complex Gaussian random
variables with zero mean and unit variance. The sequence
of eavesdropper channel matrices{H̃k(i), k = 1, 2}, is an
arbitrary sequence of lengthn and only revealed to the
eavesdropper. In contrast,Hk, k = 1, 2 are revealed to both
the legitimate partiesand the eavesdropper(s). We assume
NE , the number of eavesdropper antennas, is known to the
legitimate parties and the eavesdropper.

Userk, k = 1, 2, wishes to transmit a confidential message
Wk, k = 1, 2, to the receiver overn channel uses, while
both messages,W1 andW2, must be kept confidential from
the eavesdropper. We useγ to index a specific sequence
of {H̃k(i), k = 1, 2} over n channel uses and usẽYn

γ to
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Fig. 2. (a) A special case of MIMO MAC wiretap channel whereNT1
=

NT2
= 2, NR = 3, NE = 1, (b) Comparison between achievable s.d.o.f.

region and a simple outer bound derived by considering one eavesdropper
at a time.

represent the corresponding channel outputs forỸ
n. The

secrecy constraint is [16]:

lim
n→∞

I
(

W1, W2; Ỹ
n
γ

)

= 0, ∀γ (3)

where the convergence must be uniform overγ. The average
power constraints for the two users are given by

lim
n→∞

1

n

n∑

i=1

|Xk(i)|2 ≤ P̄k, k = 1, 2. (4)

The secrecy rate for userk, Rs,k, is defined as

Rs,k = lim
n→∞

1

n
H(Wk), k = 1, 2. (5)

such thatWk can be reliably decoded by the receiver, and
(3) and (4) are satisfied.

We define the secrecy degrees of freedom as:
{

(d1, d2) : dk = lim sup
P̄1=P̄2=P̄→∞

Rs,k

log2 P̄
, k = 1, 2

}

(6)

III. M OTIVATION

Before stating the main result, we illustrate the main
difficulty in characterizing the s.d.o.f. region through a simple
example. As illustrated in Figure 2(a), each transmitter has 2
antennas and the intended receiver has 3 antennas. We assume
the eavesdropper only has 1 antenna. Letx1, x2, x3, x4 de-
note the transmitted signals from the two users andy1, y2, y3

denote the signals observed by the intended the receiver. And
the main channel is given by

y1 = x1 + z1, y3 = x4 + z3 (7)

y2 = x2 + x3 + z2 (8)

wherezi, i = 1, 2, 3 denote additive channel noise. As shown
in [16], a secrecy degree of freedommin(NTk

, NR)−NE =
1 is achievable for a user if the other user remains silent.
Time sharing between these two users lead to the following
achievable s.d.o.f. region:

d1 + d2 ≤ 1, dk ≥ 0, k = 1, 2 (9)

For the converse, we begin by considering a simple upper
bound, which reduces each channel to a single-user MIMO
wiretap channel. First, by revealing the signals transmitted
by user 2 to the intended receiver and assuming that the
eavesdropper monitors eitherx1 or x2 we have thatd1 ≤ 1.



Similarly we argue thatd2 ≤ 1. To obtain an upper bound
on the sum-rate we let the two transmitters to cooperate and
reduce the system to a3× 3 MIMO link. The s.d.o.f. of this
channel [16] yieldsd1+d2 ≤ 2. This outer bound, illustrated
in Figure 2(b), does not match with the achievable region
given by (9).

As we shall show in Theorem 1, (9) is indeed the s.d.o.f.
capacity region and hence a new converse is necessary to
prove this result. Our key observation is that the above upper
bound only considers one eavesdropper at a time in deriving
each of the three bounds. For example, when derivingd1 ≤ 1,
we assume there is only one eavesdropper which is monitor-
ing eitherx1 or x2. When derivingd2 ≤ 1, we assume there
is only one eavesdropper which is monitoring eitherx3 or
x4. Similarly when derivingd1 + d2 ≤ 2 we again assume
that there is one eavesdropper on either of the links. As we
shall discuss below, a tighter upper bound is possible if we
consider the simultaneous effect of two eavesdroppers.

In our system model, there are infinitely many possible
eavesdroppers, each corresponding to a different channel
state sequence. The main difficulty is to find out a finite
number of eavesdroppers, whose joint effect leads to a
tight converse. Our choice of eavesdroppers is based on the
following intuition: When an eavesdropper chooses which
links to monitor, it should give precedence to those links
over which only one user can transmit. This is because these
links are the major contributor to the sum s.d.o.f.d1 + d2

since they are dedicated links to a certain user. Based on this
intuition, we consider the following two eavesdroppers: one
monitory1 for W1 and the other monitorsy3 for W2. As we
shall show later in Lemma 1, the first eavesdropper implies
the following upper bound onR1:

n(R1 − δn) ≤ I
(

xn
2 ; yn

2 |y
n
1 , xn

{3,4}

)

(10)

and the second eavesdropper implies the following upper
bound onR2:

n(R2 − δn) ≤ I
(

yn
1 , xn

{3,4}; y
n
2

)

(11)

Their joint effect can be captured by adding (10) and (11)
[25], which lead to:

n(R1 + R2 − 2δn) ≤ I
(

xn
2 , yn

1 , xn
{3,4}; y

n
2

)

(12)

Since there is only one term, which isyn
2 , at the right side

of the mutual informationI
(

xn
2 , yn

1 , xn
{3,4}; y

n
2

)

, we observe
the sum s.d.o.f. can not exceed1, thereby justifying that (9)
is indeed the largest possible s.d.o.f. region for Figure 2(a).

The above example reveals one key idea behind the con-
verse. As captured by (10) and (11), a simultaneous selection
of two different eavesdroppers for the two users reduces the
effective signal dimension at the receiver from three to one,
thus leading to a tighter converse. As we shall show later in
Section V-B, in generalizing this example we are required to
systematically select a sequence of eavesdroppers using an
induction procedure.
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IV. M AIN RESULT

In this section, we state the main result of this work. To
express our result, we definert as the rank ofHt, t = 1, 2
andr0 as the rank of[ H1 | H2 ]. We will refer tort as the
number of transmit dimensions at usert = 1, 2 andr0 as the
number of dimensions at the receiver.

Theorem 1:The secrecy degrees of freedom region of
the MIMO multiple access channel with arbitrarily varying
eavesdropper channel is given by the convex hull of the
following five points of(d1, d2):

p0 = (0, 0), p1 =
(

[r1 − NE ]
+

, 0
)

(13)

p2 =
(

0, [r2 − NE ]
+
)

(14)

p3 =
(

[r1 − NE ]
+

, [r0 − r1 − NE ]
+
)

(15)

p4 =
(

[r0 − r2 − NE]
+

, [r2 − NE ]
+
)

(16)

where we use[x]+
∆
= max{x, 0}. �

Fig. 3 illustrates the structure of the s.d.o.f. region as
a function of the number of eavesdropping antennas. In
Fig. 3 (a) we haveNE ≤ min(r0 − r1, r0 − r2). In this case
the s.d.o.f. region is a polymatroid (see e.g., [26, Definition
3.1]) described bydi ≤ ri − NE andd1 + d2 ≤ r0 − 2NE.
Fig. 3 (b) illustrates the shape of the s.d.o.f. region when
min{r0 − r1, r0 − r2} ≤ NE ≤ max{r0 − r1, r0 − r2}. In
Fig. 3 (b), without loss of generality, we assumer1 < r2

and the s.d.o.f. region is bounded by the linesdi ≥ 0,
d1 ≤ r1 − NE and

(r1 + r2 − r0)d1 + (r1 − NE)d2

≤ (r1 − NE) × (r2 − NE). (17)

Whenmin(r1, r2) > NE ≥ max(r0−r1, r0−r2), the s.d.o.f.
region, as illustrated in Fig. 3 (c) is bounded bydi ≥ 0 and
the line

d1

r1 − NE

+
d2

r2 − NE

≤ 1. (18)

The s.d.o.f. region in Theorem 1 allows the following sim-
ple interpretation: The region can be expressed as a convex
hull of a set of rectangles shown by Figure 4 (illustrated
for Figure 3 (a)). Each rectangle is parameterized by the
dimensions of the subspace occupied by the transmission
signals from the two users, denoted by(t1, t2), where ti
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indicates the dimension of useri, i = 1, 2. Then in order
for the signals from both transmitters to be received reliably
by the receiver, we must have

t1 + t2 ≤ r0, 0 ≤ ti ≤ ri, i = 1, 2 (19)

Each user then transmits confidential messages with0 ≤ di ≤
[ti−NE]+ over the availableti dimensions, where the−NE

term is an effect of the secrecy constraint (3).
It is clear thatp3, p4 given by (15) and (16) are in one of

these rectangles. Hence the convex hull of these rectangles
yields the s.d.o.f. region stated in Theorem 1.

Remark 1:As evident from the interpretation above, each
user sacrificesNE in degrees of freedom to protect its own
message and there is no cooperation between the two users
to achieve the optimal s.d.o.f. region.

V. PROOF FOR THEPARALLEL CHANNEL MODEL

In this section we establish Theorem 1 for the case
of parallel channels. As illustrated in Fig. 4, the receiver
observes

yi = x1i + zi, i ∈ A, (20)

yi = x1i + x2i + zi, i ∈ B, (21)

yi = x2i + zi, i ∈ C, (22)

where the noise random variables across the sub-channels are
independent and each is distributed according toCN (0, 1)
and{x1i}i∈A∪B and{x2i}i∈B∪C denote the transmit symbols
of user 1 and user 2 respectively.

The parallel channel model is a special case of (1) with

H1 =





I|A|

I|B|

O|C|



, H2 =





O|A|

I|B|

I|C|



,

(23)

whereI|A|, I|B| andI|C| denote the identity matrices of size
|A|, |B| and |C| respectively, andO|A| andO|B| denote the
matrices, all of whose entries are zeros. We note that we
do not make any assumption on the eavesdropper’s channel
model (2).
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A. Converse :NE ≤ min(|A|, |C|)

We need to show that the s.d.o.f. region is contained within

d1 ≤ |A| + |B| − NE (24)

d2 ≤ |C| + |B| − NE (25)

d1 + d2 ≤ |A| + |B|+ |C| − 2NE (26)

Since (24) and (25) directly follow from the single user case
in [16], we only need to show (26).

Let Ek be the set of links such that an eavesdropper is
monitoring for Wk, k = 1, 2. |E1| = |E2| = NE . A ⊇ E1,
C ⊇ E2. We establish the following upper bound on the
achievable rate pairs.

Lemma 1:

n(Rs,1 − δn) ≤ I
(

Xn
1,A\E1

; Y n
A\E1

)

+ I
(
Xn

1,B; Y n
B |M

)

(27)

n(Rs,2 − δn) ≤ I(Xn
2,C\E2

; Y n
C\E2

) + I (M ; Y n
B ) (28)

whereM =
(
Y n

1,A, Xn
2,B∪C

)
.

Proof: The proof is provided in Appendix A.
The proof is completed upon adding (27) and (28) so that

n(Rs,1 + Rs,2 − 2δn)

≤ (Xn
1,A\E1

; Y n
1,A\E1

) + I(Xn
2,C\E2

; Y n
2,C\E2

)

+ I(M, Xn
1,B; Y n

B ) (29)

and using

d

(
1

n
I(Xn

A\E1
; Y n

A\E1
)

)

≤ |A| − NE (30)

d

(
1

n
I(Xn

C\E2
; Y n

C\E2
)

)

≤ |C| − NE (31)

d

(
1

n
I(M, Xn

1,B; Y n
B )

)

≤ |B| (32)

where d(x)
∆
= limP→∞

x(P )
log2 P

characterizes the pre-log
scaling ofx with respect toP .

B. Converse :NE > max(|A|, |C|)

Without loss of generality, we assume|C| ≥ |A|. Let Ek be
the set of links such that an eavesdropper is monitoring for
Wk, k = 1, 2. Let |E1| = |E2| = NE, A ⊂ E1, andC ⊂ E2.



Define the setF ,G such thatF = B\E1, G = B\E2. Since
|C| ≥ |A|, we have|G| ≥ |F|.

Then Theorem 1 reduces todk ≥ 0, k = 1, 2 and

|G|d1 + |F|d2 ≤ |F| × |G| (33)

which we now show. We first introduce the following lemma:
Lemma 2:For any choice ofF ⊆ B and G ⊆ B with

appropriate cardinalities the ratesRs,1 and Rs,2 are upper
bounded by

n(Rs,1 − δn) ≤ I
(

Xn
1,F ; Y n

F |M, Xn
1,B\F

)

(34)

n(Rs,2 − δn) ≤ I
(

M, Xn
1,B\G ; Y n

G

)

(35)

whereM =
{
Y n

1,A, Xn
2,B∪C

}
.

Proof: The proof is provided in Appendix B.
For the remainder of the proof we assume without

loss of generality thatB = {1, . . . , |B|}. We fix G =
{1, . . . , |G|} while choosing|G| different sets of|F| ele-
ments:F1, . . . ,F|G| as we explain below.

Definition 1: Let V0 = G, c0 = 1. For i ≥ 1 recursively
constructFi as follows.

1) Case I: |Vi−1| ≥ |F|
Let Fi = {Vi−1(1), . . . ,Vi−1(|F |)}, whereVi−1(k)
denotes thekth smallest element inVi−1. Let Vi =
Vi−1\F , and ci = ci−1. This case is illustrated in
Figure 5(a) fori = 1.

2) Case II: |Vi−1| < |F|
Let Fi = Vi−1 ∪Hi, andVi = G\Hi, andci = ci−1 +
1, whereHi = {1, 2, . . . , |F| − |Vi−1|}. This case is
illustrated in Figure 5(b) fori = 4.

To interpret the above construction, we note that the setG
is a row-vector with|G| elements and letG⊗ be obtained by
concatenating|F| identical copies of theG vector i.e.,

G⊗ = [G | G | . . .G]
︸ ︷︷ ︸

|F| copies

(36)

As shown in Figure 5, by our construction, the vectorF1

spans the first|F| elements ofG⊗, the vectorF2 spans the
next |F| elements ofG⊗ etc. The constantci denotes the
number of copies of theG vector necessary to coverFi .

When i = |G| the row-vectorFi terminates exactly at the
end of the lastG vector inG⊗. Hence,

c|G| = |F|, V|G| = φ. (37)

By going through the above recursive procedure and in-
voking Lemma 2 repeatedly, each time by settingF in (34)
and (35) to beFi, we establish the following upper bound
on the rate region.

Lemma 3:For each i = 0, 1, . . . , |G| and the set of
channelsF1, F2, . . . ,F|G| defined in Def. 1, the rate pair
(Rs,1, Rs,2) satisfies the following upper bound

i · n(Rs,1 − δn) + ci · n(Rs,2 − δn)

≤
i∑

j=1

I(M, Xn
1,B; Y n

Fj
) + I(M, Xn

1,B\G ; Y n
Vi

). (38)

Before providing a proof, we note that (33) follows from (38)
as described below. Evaluating (38) withi = |G|, using (37)
and lettingR̃s,i = Rs,i − δn,

n|G|R̃s,1 + n|F|R̃s,2 ≤

|G|
∑

j=1

I(M, Xn
1,B; Y n

Fj
) (39)

=

|G|
∑

j=1

{

h(Y n
Fj

) − h(Y n
Fj
|M, Xn

1,B)
}

(40)

= n {|G| · |F| · log2 P + Θ(1)} , (41)

where the last step uses the fact that

h(Y n
Fj

) ≤
∑

k∈Fj

h(Y n
k ) ≤ n{|F| log2 P + O(1)}, (42)

and

h(Y n
Fj
|M, Xn

1,B) = h(Y n
Fj
|Xn

1,Fj
, Xn

2,Fj
) = n · O(1). (43)

Dividing each side of (41) bylog2 P and taking the limit
P → ∞ yields (33).

Proof of Lemma 3:We use induction over the variable
i to establish (38). Fori = 0, note thatc0 = 0 andV1 = G
and hence (38) is simply (35). This completes the proof for
the base case.

For the induction step, we assume that (38) holds for some
t = i, we need to show that (38) also holds fort = i + 1,
i.e.,

(i + 1) · n(Rs,1 − δn) + ci+1 · n(Rs,2 − δn) ≤
i+1∑

j=1

I(M, Xn
1,B; Y n

Fj
) + I(M, Xn

1,B\G ; Y n
Vi+1

) (44)

holds. For our proof we separately consider the cases when
|F| ≤ |Vi| and when|Vi| < |F| holds.

When |F| ≤ |Vi|, from Definition 1

Fi+1 ⊆ Vi, Vi+1 = Vi\Fi+1, ci+1 = ci (45)

holds. Then (44) follows by combining (38) with (34) as we
show below. Note that

I(M, Xn
1,B\G ; Y n

Vi
) = I(M, Xn

1,B\G ; Y n
Fi+1

|Y n
Vi\Fi+1

)

+ I(M, Xn
1,B\G ; Y n

Vi+1
) (46)

≤ I(M, Xn
1,B\G , Y n

Vi\Fi+1
; Y n

Fi+1
) + I(M, Xn

1,B\G ; Y n
Vi+1

)

(47)

≤ I(M, Xn
1,B\G , Xn

1,Vi\Fi+1
; Y n

Fi+1
) + I(M, Xn

1,B\G ; Y n
Vi+1

)

(48)

≤ I(M, Xn
1,B\G , Xn

1,G\Fi+1
; Y n

Fi+1
) + I(M, Xn

1,B\G ; Y n
Vi+1

)

(49)

= I(M, Xn
1,B\Fi+1

; Y n
Fi+1

) + I(M, Xn
1,B\G ; Y n

Vi+1
) (50)

where (46) follows from the chain rule of the mutual infor-
mation and the definition ofVi+1 in (45), while (48) follows
from the Markov condition

Y n
Vi\Fi+1

↔ (Xn
1,Vi\Fi+1

, Xn
2,Vi\Fi+1

) ↔ (M, Y n
Fi+1

, Xn
1,B\G)

(51)



and the fact thatM = (Xn
2,B∪C , Y n

1,A) already includes
Xn

2,Vi\Fi+1
, (49) follows from the fact thatVi ⊆ G, while (50)

follows from the fact that{B\G}∪ {G\Fi+1} = {B\Fi+1}.
Substituting (50) into the last term in (38) we get

i · n(Rs,1 − δn) + ci · n(Rs,2 − δn)

≤
i∑

j=1

I(M, Xn
1,B; Y n

Fj
) + I(M, Xn

1,B\G ; Y n
Vi

)

≤
i∑

j=1

I(M, Xn
1,B; Y n

Fj
) + I(M, Xn

1,B\Fi+1
; Y n

Fi+1
)

+ I(M, Xn
1,B\G ; Y n

Vi+1
). (52)

Finally combining (52) with (34) and usingci+1 = ci

(c.f. (45)) we have

(i + 1) · n(Rs,1 − δn) + ci+1 · n(Rs,2 − δn)

≤
i∑

j=1

I(M, Xn
1,B; Y n

Fj
) + I(M, Xn

1,B\Fi+1
; Y n

Fi+1
)

+ I(M, Xn
1,B\G ; Y n

Vi+1
)

+ I(Xn
1,Fi+1

; Y n
Fi+1

|M, Xn
1,B\Fi+1

) (53)

=

i+1∑

j=1

I(M, Xn
1,B; Y n

Fj
) + I(M, Xn

1,B\G ; Y n
Vi+1

) (54)

as required .
When |F| > |Vi|, as stated in Definition 1 we introduce

Hi+1 = {1, 2, . . . , |F| − |Vi|} and recall that

Fi+1 = Vi ∪Hi+1, Vi+1 = G\Hi+1, ci+1 = ci + 1
(55)

holds. From (35) and (44) we have that

i · n(Rs,1 − δn) + (ci + 1) · n(Rs,2 − δn)

=

i∑

j=1

I(M, Xn
1,B; Y n

Fj
) + I(M, Xn

1,B\G ; Y n
Vi

)

+ I(M, Xn
1,B\G ; Y n

G ) (56)

=
i∑

j=1

I(M, Xn
1,B; Y n

Fj
) + I(M, Xn

1,B\G ; Y n
Vi

)

+ I(M, Xn
1,B\G ; Y n

Hi+1
|Y n

G\Hi+1
) + I(M, Xn

1,B\G ; Y n
Vi+1

)

(57)

As we will show subsequently,

I(M, Xn
1,B\G ; Y n

Vi
) + I(M, Xn

1,B\G ; Y n
Hi+1

|Y n
G\Hi+1

)

≤ I(M, Xn
1,B\Fi+1

; Y n
Fi+1

). (58)

Combining (34), (57) and (58) and usingci+1 = ci + 1 we
get that

(i + 1) · n(Rs,1 − δn) + ci+1 · n(Rs,2 − δn)

≤
i∑

j=1

I(M, Xn
1,B; Y n

Fj
) + I(M, Xn

1,B\G ; Y n
Vi+1

)

+ I(M, Xn
1,B\Fi+1

; Y n
Fi+1

) + I(Xn
Fi+1

; Y n
Fi+1

|M, Xn
1,B\Fi+1

)

(59)

=

i∑

j=1

I(M, Xn
1,B; Y n

Fj
) + I(M, Xn

1,B\G ; Y n
Vi+1

)

+ I(M, Xn
1,B; Y n

Fi+1
), (60)

which establishes (44).
It only remains to establish (58) which we do now. First,

sinceFi+1 ⊆ G it follows that {B\G} ⊆ {B\Fi+1} and
hence we bound the first term in the left hand side of (58)
as

I(M, Xn
1,B\G ; Y n

Vi
) ≤ I(M, Xn

1,B\Fi+1
; Y n

Vi
). (61)

Next, since the setHi+1 = {1, . . . , |F|−|Vi|} constitutes the
first |F|−|Vi| elements ofG andVi = {|G|−|Vi|+1, . . . , |G|}
constitutes the last|Vi| elements ofG and|F| ≤ |G| we have
that

{G\Hi+1} = {|F| − |Vi| + 1, . . . , |G|}

= {|F| − |Vi| + 1, . . . , |G| − |Vi|} ∪ {|G| − |Vi| + 1, . . . , |G|}

= {G\(Hi+1 ∪ Vi)} ∪ Vi

= {G\Fi+1} ∪ Vi (62)

where the last relation follows from the definition ofFi+1

(c.f. (55)). Using (62) we can bound the second term in (58)
as follows.

I(M, Xn
1,B\G ; Y n

Hi+1
|Y n

G\Hi+1
)

= I(M, Xn
1,B\G ; Y n

Hi+1
|Y n

G\Fi+1
, Y n

Vi
) (63)

≤ I(M, Xn
1,B\G , Y n

G\Fi+1
; Y n

Hi+1
|Y n

Vi
) (64)

≤ I(M, Xn
1,B\G , Xn

1,G\Fi+1
; Y n

Hi+1
|Y n

Vi
) (65)

= I(M, Xn
1,B\Fi+1

; Y n
Hi+1

|Y n
Vi

), (66)

where in (65), we use the Markov relation

Y n
G\Fi+1

↔ (Xn
1,G\Fi+1

, Xn
2,G\Fi+1

) ↔ (M, Xn
1,B\G , Y n

Fi+1
)

(67)

and the fact thatM = (Xn
2,B∪C , Y n

1,A) already contains
Xn

2,G\Fi+1
. Combining (61) and (66) gives

I(M, Xn
1,B\G ; Y n

Vi
) + I(M, Xn

1,B\G ; Y n
Hi+1

|Y n
G\Hi+1

)

≤ I(M, Xn
1,B\Fi+1

; Y n
Fi+1

), (68)

thus establishing (58).
This completes the proof.

C. Converse:min(|A|, |C|) ≤ NE ≤ max(|A|, |C|)

The proof of this case is similar to the previous two cases.
It is omitted here and will be provided in the journal version
of this work.

VI. CONCLUSION

In this work we have studied the two-transmitter Gaus-
sian complex MIMO-MAC channel where the eavesdropper
channel is arbitrarily varying and its state is known to the
eavesdropper only, and the main channel is static and its state
is known to all nodes. We have completely characterized the
s.d.o.f. region for this channel for all possible antenna con-
figurations. The converse was proved by carefully changing



the set of signals available to the eavesdropper through an
induction procedure in order to obtain an upper bound on a
weighted-sum-rate expression.

As suggested by this work, the optimal strategy for a
communication network where the eavesdropper channel is
arbitrarily varying can potentially be very different fromthe
case where the eavesdropper channel is fixed and its state
is known to all terminals. Characterizing secure transmission
limits for a broader class of communication models is hence
important and is left as future work.

APPENDIX A
PROOF OFLEMMA 1

For Rs,1, from Fano’s inequality, we have

n(Rs,1 − δn) ≤ I(W1; Y
n
A∪B∪C) − I(W1; Y

n
E1

) (69)

≤ I
(
W1; Y

n
A∪B∪C |Y

n
E1

)
(70)

≤ I
(
W1; Y

n
A∪B∪C , Xn

2,B∪C|Y
n
E1

)
(71)

= I
(
W1; Y

n
A∪B, Xn

2,B∪C |Y
n
E1

)
(72)

where the last step (72) relies on the fact that the additive
noise at each receiver end of each sub-channel in Figure 4
is independent from each other and hence

Y n
C → Xn

2,C → (W1, Y
n
A∪B, Y n

E1
, Xn

2,B)

holds. Since
(
Xn

2,C , Xn
2,B

)
is independent fromW1, andE1 ⊆

A, (72) can be written as:

I
(
W1; Y

n
A∪B|Y

n
E1

, Xn
2,B∪C

)

=I
(

W1; Y
n
(A\E1)∪B|Y

n
E1

, Xn
2,B∪C

)

(73)

=I
(

W1; Y
n
A\E1

|Y n
E1

, Xn
2,B∪C

)

+ I
(
W1; Y

n
B |Y n

A , Xn
2,B∪C

)

(74)

where the last step (74) follows from the factE1 ⊆ A and
henceA = (A\E1) ∪ E1. We separately bound each of the
two terms above.

I
(

W1; Y
n
A\E1

|Y n
E1

, Xn
2,B∪C

)

≤ I
(

W1, Y
n
E1

, Xn
2,B∪C ; Y n

A\E1

)

≤ I
(

W1, Y
n
E1

, Xn
2,B∪C , Xn

1,A\E1
; Y n

A\E1

)

(75)

= I
(

Xn
1,A\E1

; Y n
A\E1

)

(76)

where the last step follows from the Markov chain relation
Y n

1,A\E1
↔ Xn

A\E1
↔ (W1, Y

n
E1

, Xn
2,B∪C), We upper bound

the second term in (74) as follows

I
(
W1; Y

n
B |Y n

A , Xn
2,B∪C

)

≤ I
(
Xn

1,A∪B; Y n
B |Y n

A , Xn
2,B∪C

)
(77)

= I
(
Xn

1,B; Y n
B |Y n

A , Xn
2,B∪C

)

+ I
(
Xn

1,A; Y n
B |Y n

A , Xn
2,B∪C , Xn

1,B

)
(78)

= I
(
Xn

1,B; Y n
B |Y n

A , Xn
2,B∪C

)
(79)

where we use the Markov relationW1 ↔ Xn
1,A∪B ↔

(Y n
A , Xn

2,B∪C) in step (77) and (79) follows from the fact
Markov relation

Y n
B ↔ (Xn

1,B, Xn
2,B) ↔ (Xn

2,C , Y n
A ) (80)

Note that (27) follows upon substituting (76) and (79)
into (74).

For Rs,2, from Fano’s inequality and the secrecy con-
straint, we have:

n(Rs,2 − δn) ≤ I(W2; Y
n
A∪B∪C) − I(W2; X

n
2,E2

) (81)

≤I
(
W2; Y

n
A∪B∪C |X

n
2,E2

)
(82)

=I
(
W2; Y

n
B∪C |Y

n
A , Xn

2,E2

)
(83)

=I
(

W2; Y
n
(C\E2)∪B|Y

n
A , Xn

2,E2

)

(84)

=I
(

W2; Y
n
C\E2

|Y n
A , Xn

2,E2

)

+ I
(

W2; Y
n
B |Y n

A , Xn
2,E2

, Y n
C\E2

)

(85)

where (83) follows from the fact thatY n
A is independent of

(W2, X
n
2,B∪C) and (84) follows from the fact thatY n

E2
→

Xn
2,E2

→ (Y n
B∪C\E2

, W2, Y
n
A ) holds. We separately bound

each term in (85).

I
(

W2; Y
n
C\E2

|Y n
A , Xn

2,E2

)

≤ I
(

W2, Y
n
A , Xn

2,E2
; Y n

C\E2

)

(86)

≤ I
(

Xn
2,C\E2

, W2, Y
n
A , Xn

2,E2
; Y n

C\E2

)

(87)

= I
(

Xn
2,C\E2

; Y n
C\E2

)

, (88)

where the justification for establishing (88) is identical to (76)
and hence omitted. We finally bound the second term in (85).

I
(

W2; Y
n
B |Y n

A , Xn
2,E2

, Y n
C\E2

)

(89)

≤I
(

Xn
2,B∪C ; Y n

B |Y n
A , Xn

2,E2
, Y n

C\E2

)

(90)

≤I
(

Y n
A , Xn

2,B∪C, Xn
2,E2

, Y n
C\E2

; Y n
B

)

(91)

=I
(
Y n
A , Xn

2,B∪C , Xn
2,E2

; Y n
B

)

+ I
(

Y n
C\E2

; Y n
B |Y n

A , Xn
2,B∪C, Xn

2,E2

)

(92)

=I
(
Y n
A , Xn

2,B∪C ; Y n
B

)
(93)

where the justification for arriving at (93) is similar to (79)
and hence omitted.

Substituting (88) and (93) into (85) we establish (28).

APPENDIX B
PROOF OFLEMMA 2

Assume the eavesdropper monitorsY n
A and Xn

1,E1\A
for

W1. Then forRs,1, from Fano’s inequality, we have:

n(Rs,1 − δn)

≤I (W1; Y
n
A∪B∪C) − I

(

W1; Y
n
A , Xn

1,E1\A

)

(94)

≤I
(

W1; Y
n
A∪B∪C |Y

n
A , Xn

1,E1\A

)

(95)

=I
(

W1; Y
n
B∪C |Y

n
A , Xn

1,E1\A

)

(96)

≤I
(

W1; Y
n
B∪C , Xn

2,B∪C|Y
n
A , Xn

1,E1\A

)

(97)

=I
(

W1; Y
n
B∪C |Y

n
A , Xn

1,E1\A
, Xn

2,B∪C

)

(98)

=I
(

W1; Y
n
F |Y n

A , Xn
1,E1\A

, Xn
2,B∪C

)

(99)



=I
(

W1; Y
n
F |Y n

A , Xn
1,B\F , Xn

2,B∪C

)

(100)

where (98) follows from the fact thatXn
2,B∪C is independent

of (W1, Y
n
A , Xn

1,E1\A
). while (99) follows from the fact that

since the noise across the channels is independent the Markov
condition

(Y n
E1\A

, Y n
C ) ↔ (Xn

1,E1\A
, Xn

2,B∪C) ↔ (W1, Y
n
B\E1

, Y n
A )

holds and furthermore we have definedF = B\E1.
Since the channel noise is independent of the message,

W1 ↔ Xn
1,A∪B ↔ (Y n

F∪A, Xn
1,B\F , Xn

2,B∪C) holds. Hence

I
(

W1; Y
n
F |Y n

A , Xn
1,B\F , Xn

2,B∪C

)

(101)

≤I
(

Xn
1,A∪B; Y n

F |Y n
A , Xn

1,B\F , Xn
2,B∪C

)

(102)

=I
(

Xn
1,F ; Y n

F |Y n
A , Xn

1,B\F , Xn
2,B∪C

)

+ I
(

Xn
1,A∪B\F ; Y n

F |Y n
A , Xn

1,B, Xn
2,B∪C

)

(103)

=I
(

Xn
1,F ; Y n

F |Y n
A , Xn

1,B\F , Xn
2,B∪C

)

(104)

where the last step uses the fact that the second term in (103)
involves conditioning on(Xn

1,F , Xn
2,F) and hence is zero.

This establishes (34).
For Rs,2, we assume the eavesdropper is monitoring

Xn
2,C , Xn

2,E2\C
for W2. Using Fano’s inequality and the se-

crecy constraint, we have:

n(Rs,2 − δn) ≤ I (W2; Y
n
A∪B∪C) − I

(
W2; X

n
2,E2

)
(105)

≤I
(
W2; Y

n
A∪B∪C |X

n
2,E2

)
(106)

≤I
(
W2; Y

n
A∪B∪C , Xn

1,E2∩B|X
n
2,E2

)
(107)

=I
(
W2; Y

n
B∪C |X

n
2,E2

, Y n
A , Xn

1,E2∩B

)
(108)

≤I
(
Xn

2,B∪C ; Y n
B∪C |X

n
2,E2

, Y n
A , Xn

1,E2∩B

)
(109)

=I
(
Xn

2,B∪C ; Y n
G∪E2

|Xn
2,E2

, Y n
A , Xn

1,E2∩B

)
(110)

=I
(
Xn

2,B∪C ; Y n
G |Xn

2,E2
, Y n

A , Xn
1,E2∩B

)

+ I
(
Xn

2,B∪C; Y n
E2
|Xn

2,E2
, Y n

A∪G , Xn
1,E2∩B

)
(111)

=I
(
Xn

2,B∪C ; Y n
G |Xn

2,E2
, Y n

A , Xn
1,E2∩B

)
(112)

≤ I
(
Xn

2,B∪C , Y n
A , Xn

1,E2∩B; Y n
G

)
(113)

≤I
(

M, Xn
1,B\G ; Y n

G

)

(114)

where (108) follows from the fact that(Xn
1,E2∩B, Y n

A ) are
the transmitted signals from user 1 and independent of
(W2, X

n
2,E2

) and (110) follows from the fact thatC ⊆ E2 ⊆
B∪C andG = B\E2 and henceE2∪G = B∪C holds. Eq. (112)
follows from the fact that since the noise on each channel is
Markov, we haveY n

E2
↔ (Xn

2,E2
, Xn

1,E2∩B) ↔ (Y n
A∪G , Xn

B∪C)
and hence the second term in (111) is zero.

Hence we have proved Lemma 2.
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