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Abstract—We investigate a two-transmitter Gaussian multiple in [16] for the special case when all the legitimate ternsnal
access Wwiretap channel with multiple antennas at each of have equal number of antennas. A time-sharing based tech-
the nodes. The channel transfer matrices at the legitimate nique is shown to be sufficient in achieving the s.d.o.f.oagi

terminals are fixed and revealed to all the terminals, wherea A develon in thi th f | b f
the channel transfer matrix of the eavesdropper is arbitraily S we develop In this paper, the case of unequal number o

varying and only revealed to the eavesdropper. We characteze antennas requires a non-trivial extension of [16].
the secrecy degrees of freedom (s.d.o.f.) region under a sirg Our main contribution is to characterize the s.d.o.f. ragio
secrecy constraint. A transmission scheme that orthogoniakes of the two-transmitter MIMO MAC channel when the eaves-
the transmit signals of the two users at the intended receiveand  y.onner channel is arbitrarily varying. The s.d.o.f. regi@mn
uses a single-user wiretap code is sufficient to achieve thel®.f. b hi d b h that orth i the t it
region. The converse involves establishing an upper boundhca _e achieved by a scheme a, or Ogona'Z?S e transmi
weighted-sum-rate expression. This is accomplished by using an Signals of the two users at the intended receiver. Moreover,
induction procedure, where at each step we combine the seag it suffices to use a single-user wiretap channel code [16] and
and multiple-access constraints associated with an adversy no cooperation from the other user is necessary, except in
eavesdropping a carefully selected group of sub-channels. sharing the transmit dimensions. To establish the opttgali

|. INTRODUCTION of this scheme, our converse proof decomposes the MIMO
(MAC channel into a set of parallel and independent channels

While prevalent architectures for secure communicati ) . "
b iymg the generalized singular value decomposition (GSVD)

are primarily based on cryptographic techniques [1], th
cannot address all the vulnerabilities in complex netwdrk
systems. The area of physical layer security [2]-[4] inve

set of eavesdroppers, each monitoring a subset of links, is
g_elected using an induction procedure (Definition 1) and the
g§ulting secrecy constraints are combined to obtain aerupp

tigates security solutions using resources at the physi d hted i ion. Th bound
layer and compliments existing cryptographic technique ound on a weighted sum-rate expression. 1he upper boun
atches the achievable rate in terms of the s.d.o.f. region,

Furthermore the associated techniques do not rely on a co{ﬁ1 ling th bl ised in 1161 for th £t
putationally bounded adversarial model, but instead pi@vi us settling the problem raised in [16] for the case of two

) : . . ransmitters.
a rigorous theoretical proof of security [5] making suc}% . .
techniques appealing in certain mission-critical appid To the best of our knowledge the s.d.o.f. region remains

Secure communication using multiple antennas has be en when the eavesdropper channel is perfectly known to

. I : terminals. A significant body of literature already ésis
extensively studied in recent times, see e.g., [6]-[14ESEh a _
works investigate efficient signaling mechanisms using 1R this problem. See e.g., [3], [18]-{20]. If the channel

spatial degrees of freedom provided by multiple antenng]sOdel has real inputs and outputs, Gaussian signaling is in

to limit an eavesdropper's ability to decode informatior’general suboptimal and user cooperating strategies as well

The underlying information theoretic problem, the mul'[if’tls.‘Q"gn":1I b"’ll.“ghnrgerht 'E[ech(rjnql;esra;e .necezgaryb[|21]. I_n [22]
antenna wiretap channel, is studied and the associatmbgec? IS estabiisned that s.0d.0.1. of/2 is ac ievable using
| interference alignment for almost all configuratioris o

capacity is investigated. We note that these works assufrig : :
that the eavesdropper’s channel state information is aivail channel gains. If the <_:hanne| mod_el has Comp'e’? inputs and
either completely or partially, although such an assunnpti<9UtPUts' It is shown n [23, Secpon 5.16] thqt n gengral
cannot be justified in practice. s.d.o.f. of 1/2 is achievable using asymmetric Gaussian

More recently, [15]-[17] study secrecy capacity when th%lgnal;ng]; .Ind.cc.);tra}st, tthe-gbe?:stf kngvz?] upper bon:ngl_orr: (tjhe
eavesdropper channel is arbitrarily varying and its chhnrig 203 'g '?_ |V|5u5a rates ig/3 for both cases, establishe
states are known to the eavesdropper only. Reference [i% » Section 5.5].

studies the single-user Gaussian multi-input-multi-atitp he remainder of this paper is organized as follows. In

(MIMO) wiretap channel and characterizes the secrecy qaection II, we describe the system model. The main result is
grees of freedom (s.d.0.f.). The two user Gaussian MIM ated as Theorem 1 in Section IV. Due to page limit, we shall

multiple access (MIMO-MAC) channel is also investigateanly prove the converse of Theorem 1 for the case of parallel
channels, which is given in Section V. The general case can

1 The ordering of authors is alphabetical. be easily reduced to this case through general singulaevalu
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represent the corresponding channel outputs Yér. The
decomposition [24] and its proof will be given in the journa$ecrecy constraint is [16]:

version of this work. lim (W Wo¥™) =0, v 3
We use the following notation throughout the paper: For e ( b V) =% Y 3)

a setA, Vi 4 and V4 denote the set of random variablegyhere the convergence must be uniform oyefhe average

{Vij,i € A} and{Vj,j € A} respectively.{d,} denotes power constraints for the two users are given by
a non-negative sequence of that converges td) when

n goes toco. We use bold upper-case font for matrices lim lzlxk(mz <P, k=12 (4)
and vectors and lower-case font for scalars. The distinctio n—oo - ’
between matrices and vectors will be clear from the conte

For a setA, |A| denotes its cardinality and a short hanéIhe secrecy rate for usét £, is defined as

notation 2™ is used for the sequencgry,za,...,z,}. & T B
denotes the empty set. R = nh—{l;o nH(Wk)’ k=12 ©®)
such thatl¥,, can be reliably decoded by the receiver, and
Il. SYSTEM MODEL (3) and (4) are satisfied.

As shown in Figure 1, we consider a discrete-time channelWWe define the secrecy degrees of freedom as:
model where two transmitters communicate with one receiver R. .
in the presence of an eavesdropper. We assume transinitter {(dl, dp) :dp = limsup —, k=1, 2} (6)
has Nz, antennasj = 1,2, the legitimate receiver ha&r Pi=Py=P—o0 1082 P

antennas whereas the eavesdropper Nasantennas. The I11. M OTIVATION
channel model is defined by Before stating the main result, we illustrate the main
2 difficulty in characterizing the s.d.o.f. region throughmagle
Y (i) = Z H, X}, (1) + Z(4) (1) example. As illustrated in Figure 2(a), each transmitter ba
=1 antennas and the intended receiver has 3 antennas. We assume
_ 2 the eavesdropper only has 1 antenna. tgtrs, 23,24 de-
Y (i) = Hy, (1) X (7) (2) note the transmitted signals from the two users ands., y3
k=1 denote the signals observed by the intended the receiver. An

wherei € {1,...,n} denotes the time-indextl;, k = 1,2, the main channel is given by

are channel matrices arid is the additive Gaussian noise Y1 =21+ 21, Ys=x4+23 7

observed by the intended receiver, which is composed of _

. . ) . . Y2 =22+ a3+ 22 (8)

independent rotationally invariant complex Gaussian oamd

variables with zero mean and unit variance. The sequengberez;,i = 1,2, 3 denote additive channel noise. As shown

of eavesdropper channel matricgH, (i), k = 1,2}, is an in[16], a secrecy degree of freedanin(Nr,, Ng) — Ng =

arbitrary sequence of length and only revealed to the 1 is achievable for a user if the other user remains silent.

eavesdropper. In contradl;, k = 1,2 are revealed to both Time sharing between these two users lead to the following

the legitimate partiemnd the eavesdropper(s). We assumachievable s.d.o.f. region:

Ng, the number of eavesdropper antennas, is known to the

legitimate parties and the eavesdropper. ditdp <1, dp 20, k=1,2 ©)
Userk, k = 1,2, wishes to transmit a confidential message For the converse, we begin by considering a simple upper

Wy, k = 1,2, to the receiver oven channel uses, while bound, which reduces each channel to a single-user MIMO

both messages$); and W5, must be kept confidential from wiretap channel. First, by revealing the signals transitt

the eavesdropper. We usgto index a specific sequenceby user2 to the intended receiver and assuming that the

of {flk(z‘),k = 1,2} over n channel uses and ugi‘;l to eavesdropper monitors either or xo we have that; < 1.



Similarly we argue thatl; < 1. To obtain an upper bound d> s B a d
on the sum-rate we let the two transmitters to cooperate and”” b2 =

reduce the system to3ax 3 MIMO link. The s.d.o.f. of this P2 =pa

channel [16] yieldsl; +ds < 2. This outer bound, illustrated D3

in Figure 2(b), does not match with the achievable region D3

given by (9). di d; di
As we shall show in Theorem 1, (9) is indeed the s.d.o.f. P h PL="s

. . . (a) (b) (©
capacity region and hence a new converse is necessary to

prove this result. Our key observation is that the above UPRS, 3 The secrecy degrees of freedom (s.d.o.f.) regionhieofem 1: (a)
bound only considers one eavesdropper at a time in derlvwg Ng < min{ro — 71,70 — 72}, (b) min{ro — r1,ro — r2} < Np <
each of the three bounds. For example, when deriding 1, max{ro —r1,70 — 72}, (¢) max{ro —r1,70 — 72} < Ng
we assume there is only one eavesdropper which is monitor-
ing eitherxz; or zo. When derivingds < 1, we assume there
is only one eavesdropper which is monitoring eithgror IV. MAIN RESULT
x4. Similarly when derivingd; + d2 < 2 we again assume In this section, we state the main result of this work. To
that there is one eavesdropper on either of the links. As wgpress our result, we defing as the rank off;,t = 1,2
shall discuss below, a tighter upper bound is possible if vemdr, as the rank of H; | Hs |. We will refer tor; as the
consider the simultaneous effect of two eavesdroppers. number of transmit dimensions at uget 1,2 andrg as the

In our system model, there are infinitely many possibleumber of dimensions at the receiver.
eavesdroppers, each corresponding to a different channeTheorem 1:The secrecy degrees of freedom region of
state sequence. The main difficulty is to find out a finitthe MIMO multiple access channel with arbitrarily varying
number of eavesdroppers, whose joint effect leads toeavesdropper channel is given by the convex hull of the
tight converse. Our choice of eavesdroppers is based on thkowing five points of(dy, d2):
following intuition: When an eavesdropper chooses which n
links to monitor, it should give precedence to those links =(0,0), m= ([ r1 — NE] ,0) (13)

over which only one user can transmit. This is because these _ (O (s — Ni] ) (14)
links are the major contributor to the sum s.d.@lf.+ ds 112 2]
since they are dedicated links to a certain user. Based sn thi — ( ro— 1 — NE]+) (15)
intuition, we consider the following two eavesdropperse on
monitory, for W, and the other monitorg; for 5. As we Py = ([7’0 —rg — NE] y[ra — NE]+) (16)
shall show later in Lemma 1, the first eavesdropper implies
the following upper bound o, : where we uséz|™ = max{x,0}. O
Fig. 3 illustrates the structure of the s.d.o.f. region as
n(Ry —d,) < I(x?;yﬁy?,x?gﬁl}) (10) a function of the number of eavesdropping antennas. In

o _ Fig. 3 (a) we haveVg < min(rg — 1,79 — r2). In this case
and the second eavesdropper implies the following upp@e s.d.o.f. region is a polymatroid (see e.g., [26, Debniti

bound onRy: 3.1]) described byl; < r; — Ng anddy + ds < rg — 2NE.
Fig. 3 (b) illustrates the shape of the s.d.o.f. region when
n(Ry —6n) <1 (U?ax?g 4}'93) (11) min{ro —r1,r0 —re} < Np < max{rg —r1,r0 —r2}. In

3 (b), without loss of generality, we assume < 7o
Their joint effect can be captured by adding (10) and (135)1d the s.d.o.f. region is bounded by the lings > 0,

[25], which lead to: di <r; — Ng and
n(Ry + Ry —25,) <11 (xg,y?,x’{gA};yg) (12) (r1 412 —7r9)d1 + (11 — Ng)do
< (r1 = Ng) x (r2 — Ng). (17)

Since there is only one term, which i§, at the right side
of the mutual informatiord (:cg, YT T3 a3 yg) we observe
the sum s.d.o.f. can not excegdthereby justifying that (9)

Whenmin(ry,re) > Ng > max(rg—r1,r0—r2), the s.d.o.f.
region, as illustrated in Fig. 3 (c) is bounded &#y> 0 and

is indeed the largest possible s.d.o.f. region for Figued.2( the line
The above example reveals one key idea behind the con- d I do <1. 18)
verse. As captured by (10) and (11), a simultaneous setfectio r1—Ng 12— Ng

of two different eavesdroppers for the two users reduces theThe s.d.o.f. region in Theorem 1 allows the following sim-
effective signal dimension at the receiver from three to, ongle interpretation: The region can be expressed as a convex
thus leading to a tighter converse. As we shall show later ull of a set of rectangles shown by Figure 4 (illustrated
Section V-B, in generalizing this example we are required for Figure 3 (a)). Each rectangle is parameterized by the
systematically select a sequence of eavesdroppers usingdanensions of the subspace occupied by the transmission
induction procedure. signals from the two users, denoted by ,t2), wheret;
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Fig. 4. (a) Interpretation of the s.d.o.f. region as a convex hull ofargles:
(d1,d2) : 0 < d; < [t; — Ng]t,i = 1,2, wheret; is the number of

degrees of freedom occupied by ugelfo achieve reliable transmission, WeA' Converse Ng < mln(|A|, |C|)

must have (19)(b) Definition of the set4, B,C, where|B| = 4. We need to show that the s.d.o.f. region is contained within

indicates the dimension of uséri = 1,2. Then in order & < A+ |B] = Ve (4

for the signals from both transmitters té) be received réfiab d> < [C| +|B| = Nz (25)

by the receiver, we must have di +dy < [A[ +|B] 4+ |C| — 2Ng (26)
ti+ta<rg, 0<t;<r;i=12 (19) Since (24) and (25) directly follow from the single user case

in [16], we only need to show (26).
Let &, be the set of links such that an eavesdropper is
monitoring for Wy, k = 1,2. |&1| = |&| = Ng. A 2 &,

term is an effect of the secrecy constraint (3). C O & W ) :
. . . D &. We establish the following upper bound on the
It is clear thatps, p4 given by (15) and (16) are in one of chievable rate pairs.

these rectangles. Hence the convex hull of these rectang € emma 1-
yields the s.d.o.f. region stated in Theorem 1. |

Remark 1:As evident from the interpretation above, each n(Rs; —d,) < I (XﬁA\gl;Y;(\gl) +1 (X{fg; Y| M)
user sacrificesVg in degrees of freedom to protect its own (27)

message and there is no cooperation between the two users " on o
to achieve the optimal s.d.o.f. regiom (B2 = 0n) S I(X5e\g,: Yle,) + 1 (M;YE) (28)

Each user then transmits confidential messagesOnthi; <
[t — Ng]T over the availablg; dimensions, where the Ny

V. PROOF FOR THEPARALLEL CHANNEL MODEL where M = (Y;"4, X' 5.c)-

In this section we establish Theorem 1 for the cas‘(’-_i,I Proo:::_The proloI '3 prowde((jjdl_n Ap2p7end|>sz.28 .th t
of parallel channels. As illustrated in Fig. 4, the receive e proof is completed upon adding (27) and (28) so tha

observes n(Rs1 + Rao — 20,)
yi = a1 + 2, 0 €A, (20) < (XT e Yiae) I X3o\e, Yolone,)
Yi = X1 + X + 2, 1€ DB, (21) +I(]\/[,XIL76,YZ§L) (29)
Yi = T2 + Zis (S Ca (22) and using
where the noise random variables across the sub-chaneels ar 1
independent and each is distributed according’A6(0, 1) d (EI(X,Z\&;YX\&)) <|A| - Ng (30)
and{z; }ic aup and{za; }icpuc denote the transmit symbols )
of user 1 and user 2 respectively. d <_[(Xg\52;ycn\gz)) <|C| - Ng (31)
The parallel channel model is a special case of (1) with n
1
Lia Oy4 d (;I(Ma XﬁB%Yé‘)) < B (32)
H, = I5 , Ho= I5 ;
Oc| Lic) where d(z) 2 limp_,o 1§g(P33 characterizes the pre-log

scaling ofz with respect toP.
wherel| 4|, I3 andI;¢| denote the identity matrices of size
|A|, |B| and [C| respectively, andD| 4; and O 5| denote the B. Converse Ny > max(|Al, |C[)
matrices, all of whose entries are zeros. We note that weWithout loss of generality, we assurfig > | A|. Let&; be
do not make any assumption on the eavesdropper’s chanthel set of links such that an eavesdropper is monitoring for
model (2). Wi, k=1,2. Let |&| = |&2| = Ng, A C &, andC C &,.



Define the sefF, G such thatF = B\&1, G = B\&,. Since Before providing a proof, we note that (33) follows from (38)

IC] > |Al, we have|G| > |F]|. as described below. Evaluating (38) witk= |G|, using (37)
Then Theorem 1 reduces th > 0,k = 1,2 and and lettingR, ; = Rs,; — On,
|Gldy + | Fld2 < |F| x |G| (33) N N 9]
n|G|Rey +n|F|Rea < I(M, X7 5 Y1) (39)

which we now show. We first introduce the following lemma:

Lemma 2:For any _choice off € Bandg C B with 91 =1
ggﬁ;(ijp::ja;? cardinalities the raté, ; and R, are upper _ ; W) — B(YE M, Xﬁs)} (40)
n(Roy = 02) ST (XPRYEIM X{ss)  (34) = n{|G] - |F| log, P+ ©(1)}, (41)
n(Rsa —6,) <1 (M, X p\g; ygn) (35) where the last step uses the fact that
where M — {¥{"4, X2 s }- BYE) < ST h() < n{Fllog, P+ O}, (42)

Proof: The proof is provided in Appendix B. | ke

For the remainder of the proof we assume withowtnd

loss of generality that3 = {1,...,|B|}. We fix G = " 0oy ol on noy
{1,...,]G|} while choosing|G| different sets of|F| ele- WYz, |M, Xi ) = (Y, |XT 7, X3.7,) = - O1). (43)

ments: i, ..., Fig| as we explain below. Dividing each side of (41) byog, P and taking the limit
Definition 1: Let Vo = G, ¢o = 1. Fori > 1 recursively P — o yields (33).
constructF; as follows. Proof of Lemma 3:We use induction over the variable
1) Case I: |V;_1| > |F] i to establish (38). Fof = 0, note thatcy = 0 andV; = G
Let 7 = {(Vi—1(1),...,Vi—1(|F])}, whereV;_1(k) and hence (38) is simply (35). This completes the proof for
denotes thekth smallest element in;_;. Let V; = the base case.
Vi—1\F, and ¢; = ¢;—1. This case is illustrated in  For the induction step, we assume that (38) holds for some
Figure 5(a) fori = 1. t = i, we need to show that (38) also holds for= i + 1,
2) Case Il: |Vi_1| < |F] ie.,

Let F; = V;,_1 UH;, andV; = Q\Hl, andc; = ¢;_1 + _
1, whereH; = {1,2,...,|F| — |Vi_1|}. This case is (i +1) n(Rs1 = 0n) + Ciy1 - n(Rs2 — 0n) <

illustrated in Figure 5(b) foi = 4. itl
To interpret the above construction, we note that thedset ZI (M, X7 B Y7, )+ I(M, X7 B\Q’YV1+1) (44)
is a row-vector with/G| elements and 1e§® be obtained by J=t
concatenatingF| identical copies of th& vector i.e., holds. For our proof we separately consider the cases when

|F| < |Vi| and when|V;| < |F| holds.
When|F| < |V,], from Definition 1

Fiy1 © Vi, Vit1 = Vi\Fit1, ciy1=c¢;  (45)

G°=1G1G]|...9] (36)

|F| copies

As shown in Figure 5, by our construction, the veci®r
spans the firstF| elements oiG®, the vectorF, spans the holds. Then (44) follows by combining (38) with (34) as we
next | F| elements ofG® etc. The constant; denotes the show below. Note that
number of copies of thg vector necessary to COVé; .

Wheni = |G| the row-vectorF; terminates exactly at the I(M, X163 Yv,) = T(M, X i Vi (W74

end of the lasy vector inG®. Hence, +I(M, X7 p\g: YV.,,) (46)
qg = Fl, Vg = ¢ @7 SIM Xipg Wir, i YA,,) + (M, X7 B\ngvM(zw)

By going through the above recursive procedure and |n > ;

M, X7 X7 Y. I(M, X7 Y,
voking Lemma 2 repeatedly, each time by settifign (34) ( 1E\Gr X Lvizi i VAL ) + 1 LB\G> TV

7.+1)

and (35) to beF;, we establish the following upper bound . . . . n(48)
on the rate region. SI(M, X7 s Xi g\ 7oy YA ) HIIM, X s g3 YY)
Lemma 3:For eachi = 0,1,...,|G| and the set of (49)

channels?, Fs,..., F|g defined in Def. 1, the rate pair = (M, X7 s\, ; Y7, ) + (M, X7 5 g;: Y30, ) (50)

(Rs,1, Rs,2) satisfies the following upper bound )
where (46) follows from the chain rule of the mutual infor-

i-n(Rs1 —0n) +ci-n(Rs2 —dn) mation and the definition of; ; in (45), while (48) follows
i from the Markov condition

S I(J\/[7X137Yf)+1(1\/[ XlB Q’YV) (38) n n n n n

j=1 ) Y Vi\Fiy1 (XLVi\]:Hl ’ X27V'L\]:i+l) A (M’ Y]:Hl’ 17E35\f))



and the fact thatM = (X3'p5,c,Y)",) already includes
X3, \F , (49) follows from thefactthav C G, while (50)
foIIows from the fact thaf{ B\G} U{G\Fit1} = {B\Fis1}.

Substituting (50) into the last term in (38) we get
7 - n(RSJ — 6n) —+c; - n(R&g — 6n)

< I(M X7 YE) + I(M, X7 g1 Y37
j=1

<ZIM X133YT)+I(M XlB\f+1’Yfl+1)
7j=1
+ I(M, X{ p\gi YV, ) (52)

Finally combining (52) with (34) and using;.1 = ¢;
(c.f. (45)) we have

(i‘*'l)' n(Rs1 — 0n) + cip1-n(Rs2 — 6y)
<ZIMX13an)+I(M X' B\Fips
7j=1

+I(M, XTp\g: Yv,.,)

Yz

1+1)

+ I(Xl,]:prl ? Y]:prl |M7 X{l,B\.'FH,l) (53)
1+1
=Y I(M, X7 Vi) + I(M, X7 5 gi V3h,,)  (54)

Jj=1
as required .

When |F| > |V, as stated in Definition 1 we introduce

Hit1 ={1,2,...,|F| = |V:|} and recall that
Fit1=ViUHita, Vit1 = G\ Hit1, cit1=¢i +1
(55)
holds. From (35) and (44) we have that
i-n(Rs1 — 0p) + (c; + 1) - n(Rs2 — 6n)
=Y I(M, X745 YR) + I(M, X7 563 Y37
j=1
+ 1M, X563 YE) (56)
= ZI (M, X1z YF) + 1(M, X7 p\g: Y7,
Jj=1
+1(M, X?,B\Q; Yﬁiﬂ |Y9n\7'li+1) +1(M, Xﬁzs\g§ Y\ZH)
(57)
As we will show subsequently,
I(M, X{' 5\ gi Yo0) + I(M, X7 563 Y0 Yo\t )
< I(M Xl B\fl+1’yf1+1) (58)

Combining (34), (57) and (58) and usimg,; = ¢; + 1 we
get that
(i + 1) . TL(RSJ — 671) + Ciy1 - TL(RSQ — 671)
< ZI(Ma X?B7Y.71:l]) + I(Ma XII.,B\Q;Y\Z+1)
j=1
+ I(M’ XﬁB\fi+1 ) Y}li+1) + I(X}Z:Hrl ; Y}T}Hrl |M’ XﬁB\fi+1)
(59)

=> I(M, X7 YE)+I(M, X{ 5 Y37,
j=1
+I(M, X\ YR, ),

which establishes (44).

It only remains to establish (58) which we do now. First,
since 7,41 C G it follows that {B\G} C {B\Fi+1} and
hence we bound the first term in the left hand side of (58)
as

(60)

I(M Xl B\g’YV ) < I(M Xl B\.'FH,l’YV )

Next, since the set(, 1 = {1,...,|F|—|Vi|} constitutes the
first|F|—|V;| elements off andV; = {|G|—|V;|+1,..., |G|}
constitutes the lagV;| elements ofj and|F| < |G| we have
that

(61)

{G\Hiza} ={|F| =il +1,...,1G]}

={|Fl =MWl +1,....1G] = Vi[} U{IG] = Vil + 1,...,[G]}
={G\(Hix1 UV} UV,

={0\Fi1} UV (62)

where the last relation follows from the definition &%,
(c.f. (55)). Using (62) we can bound the second term in (58)
as follows.

I(M, XY g5 Y7, 0 Y3\ )

=I(M, X7 g Y7, 1Y\ 7 YY) (63)

< I(M, XY pyg: Y r,, 5 Yot 1 YY) (64)
I(M, X7 gvg X1 g\ 7,05 Yo YY) (65)

=I(M, X{ g\ 7, s Y, YD) (66)

where in (65), we use the Markov relation

- (M’ XF,B\Q’ Y.;}i+1)
(67)

*4) already contains

n n n
Yg\fi+1 - (Xlag\Fi+l ) X27g\fi+1)

and the fact thatM = (X3 c,

X;’g\f . Combining (61) and (66) gives
I(M, X{ g\ gi Yo0) + 1M, X7 63 Y Yo\t )
< I(M Xl B\]:Hrl ) Y]:1+1) (68)
thus establishing (58).
This completes the proof. |

C. Conversemin(|A|,|C]) < Np < max(|A],|C])

The proof of this case is similar to the previous two cases.
It is omitted here and will be provided in the journal version
of this work.

VI. CONCLUSION

In this work we have studied the two-transmitter Gaus-
sian complex MIMO-MAC channel where the eavesdropper
channel is arbitrarily varying and its state is known to the
eavesdropper only, and the main channel is static and its sta
is known to all nodes. We have completely characterized the
s.d.o.f. region for this channel for all possible antenna-co
figurations. The converse was proved by carefully changing



the set of signals available to the eavesdropper through Mate that (27) follows upon substituting (76) and (79)

induction procedure in order to obtain an upper bound onirgo (74).

weighted-sum-rate expression. For R, ,, from Fano’s inequality and the secrecy con-
As suggested by this work, the optimal strategy for straint, we have:

communication network where the eavesdropper channel is

arbitrarily varying can potentially be very different frothe n(Rs on) < T(Was Y jupue) — 1 (Was X3, ) (81)

case where the eavesdropper channel is fixed and its stﬁfe(W YAuBudX2 c,) (82)

is known to all terminals. Characterizing secure transionss _ y (Wa; Yo YR, X5 e,) (83)
limits for a broader class of communication models is hence

important and is left as future work. =1 (W% YevenuslYA, X3 52) (84)

APPENDIXA =1 (W Yo e, IV X, ) + 1 (Was VEIVA, X3e, Ve, )

PROOF OFLEMMA 1 (85)

For Rz,.1, from Fano's inequality, we have where (83) follows from the fact that is independent of

n(Rs1 — 0n) < IT(WisYiupue) — I(Wh; YE) (69) (W2, X34,c) and (84) follows from the fact thaty, —

< I (Wi YiosoelYE) 70) Xie, — (YBUC\S2 Wy, Y2) holds. We separately bound

< I (Wi Voo X sl Y2) (71) each term in (85).

= (Wi Vi XimoeYE) (7)1 (WaiYae, VAL X3, ) <1 (Wa, YA Xge,i YL, )
where the last step (72) relies on the fact that the additive (86)
noise at each receiver end of each sub-channel in Figure 4< 1 (X2 o\epr Wa, Y, X3 £27YC\£2) (87)

is independent from each other and hence

Y’IL X'n ”r }rn ]/'77, n 1 ‘(;,C & 7)Cn£ ) (88)
C 2,C ( 1, L AuR> 517X2,B) ( \ 2 \ 2)
where the jUStiﬁcation for eStab”Shing (88) is Identlctﬂ(-fe)

holds. Smce(XQ c ) Is independent fronfi’;, andé; C and hence omitted. We finally bound the second term in (85).

A, (72) can be wntten as:

(W YRusIYE, X5 suc) I (Wz; VeIV, X3, Yé\gz) (89)
=I (WUY&\&)UBngX;Buc) (73) <I (XS,BUC;Y£|Y£7X£52’YCH\£2) (90)
=1 (Wl?YX\sJY&ng,Buc) +1 (W1§Y£|YXaX§,Buc) <I (Y;\le;,BUC’XQSyYCn\Sz;YBn) (91)

(74) =I (Y3, X3 50c, X536, YE)
hence < (A\6x) ) 6x. We separately bound each of the 1 (e VEIVE Kpe Ke) (2
two terms above. =I (Y%, X3 p0c: VE) (93)

1 (Wl; Y& |Y£,X§_BUC) <I (Wl, Ye, X3 sucs Y}{\gl) where the justification for arriving at (93) is similar to {79
' and hence omitted.
<I (Wl, Yer, X3 sues X1 ave,s Yﬁ\gl) (75)  Substituting (88) and (93) into (85) we establish (28).

=1 (Xf,A\&;YE\el) (76) APPENDIXB

where the last step follows from the Markov chain relation PROOF OFLEMMA 2

Y e, & Xhe, & (W1, YE, X3 50c), We upper bound ~ Assume the eavesdropper monitdrg and X', , for

the second term in (74) as follows Wi. Then for R, 1, from Fano’s inequality, we have:
I(WiYEIYE X3 s0c) n(Rs1 — 0n)
B A I A My
= 1,85 4B [ 45 A2 BUC
o vy e e <1 (W3 Yol YA Xiie, ) %5
+1 (XI,A;YB |YA7X2,BUC7X1,B) (78) ! AUBUC| A LénA ( )
=1 (X7 YEIYA, X3 pe) (79) =1 (W YiuelYa, X1 51\,4) (96)
where we use the Markov relatioW; < X7 4 — <I (Wl;YéluoX;,zsudYXaXﬁgl\A) (97)
(Y1, X3pue) in step (77) and (79) follows from the fact
Markov relation =I (Wl;Yé’chX,Xﬁgl\AaXﬁBuc) (98)
Vg o (X]'5 X35) = (X3e, Y2) (80) =1 (Wi YRV, XT e a0 XEpc) (99)



=1 (Wl; YEIYA Xip\7 X;,BUC) (100)

where (98) follows from the fact thaX} 5 . is independent

(4

of (W1, Y%, X7, 4)- while (99) follows from the fact that [
since the noise across the channels is independent the Warkg,

condition
(Yena Ye') < (XTepa Xasue) < (W, Yie,, YA)
holds and furthermore we have defingd= 5\¢&;.

Since the channel noise is independent of the messad%],

Wi e X7 408 < (Y}luA,XﬁB\f,X;BUC) holds. Hence
I(Wl;Y}_’|Y}{, fB\va;,Buc)
I (X7 s YEIVE Xy Xoie )
=1 (X7 YAIYE, Xl o X )
+1 (X?,Auzs\ﬁY£|Y£aXﬁBaX§,Buc) (103)

=1 (X7 YRIVE, X s X ) (104)

(101)
(102)

where the last step uses the fact that the second term in (1Q3)
involves conditioning on(X{ », X' ») and hence is zero.

This establishes (34).

For R;., we assume the eavesdropper is monitori
Using Fano’s inequality and the se-

X;{C,X;gz\c for Ws.
crecy constraint, we have:

<I (Wa; Yiuguel X3e,) (106)
<I (W2 Yiugue Xt e,nslXse,) (107)
=1 (Wa; YLl X5, , Y, X1 e,05) (108)
<I (X3 pucs Yiuel X3 e, YA X{'ey0) (109)
=I (X3 50c:Youe, 1 X5 e, YA, X1 e,08) (110)
=I (X3 pucs Yq | X2 e, YA, X1 e,08)

+ 1 (X3 puc Y& I XS e, Yiug: XTesns) (111)
=1 (X3 puc: Y& X5 e, YA, X1 6,08) (112)
< T (X3 pues YA X1 e,n5: YE) (113)
<1 (M, X763 Y8 (114)

where (108) follows from the fact thatX{' ., 5, Y}) are

(7]

El

[10]

[11]

[12]

e

[19]

[16]

[17]

(18]

[19]

[20]

[21]

the transmitted signals from user 1 and independent of

(W2, X3 ¢,) and (110) follows from the fact that C & C

BUC andG = B\&; and hence,UG = BUC holds. Eq. (112)

[22]

follows from the fact that since the noise on each channel is

Markov, we haveYy) < (X3'e,, X1'e,n5) < (Yiug: XBuc)
and hence the second term in (111) is zero.
Hence we have proved Lemma 2.
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