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Abstract—We study the capacity of secret-key agreement over state parameters [17]-[19] has become increasingly ewviden
a wiretap channel with state parameters. The transmitter con-  jn recent times due a variety of applications including fiadi
municates o the legitimate receiver and the eavesdropperver  channels [20], broadcast channels [21] and digital watkrma
a discrete memoryless wiretap channel with a memoryless & . . . .
sequence. The transmitter and the legitimate receiver gemnate ing [22]. For examplg in fading channels, the_s_tate varl-
a common key that must be concealed from the eavesdropper_ able Could mOde| the Instantaneous fad|ng CoeffICIent Of the
We assume that the state sequence is known non-causally tochannel. In broadcast channels the state sequence models an
the transmitter and no public discussion channel is availate. interfering message to another receiver while in wateringrk
We derive lower and upper bounds on the secret-key capacity. gysiems the state sequence represents a host sequence on
The lower bound involves constructing a common reconstru@on L . .
sequence at the legitimate terminals and binning the set of which information message needs to be embgdded. In fading
reconstruction sequences to obtain the secret-key. For thepecial Channels we assume that the state sequence is revealed to the
case of Gaussian channels with additive interferencesdcret-keys  terminals causally while in the other two applications there
from dirty paper channel) our bounds differ by 0.5 bit/symbol and  state sequence is known to the transmitter in advance. $n thi
coincide in the high signal-to-noise-ratio and high interérence- paper, unless otherwise stated, we assume that the entiee st

to-noise-ratio regimes. For the case when the legitimate ceiver is k to th d V. A di
is also revealed the state sequence, we establish that ourvier seqguence IS known to the senaer non-causally. AS we dISCUSS

bound achieves the the secret-key capacity. In addition, fo N th_e sequel, the Seemiﬁ@]'y more g(_ener_al Case_When each
this special case, we also propose another scheme that attsi receiver also has (a possibly noisy) side information can be
the capacity and requires only causal side information at te easily incorporated in this model.

transmitter and the receiver. The scenario we consider naturally applies to watermarking
systems when the goal is that of secret-key generationadste
. INTRODUCTION of message embedding. We elaborate on this application when

Secret keys are a fundamental requirement for any & jscussing the Gaussian model of this problem. Furthermore
plication involving secure communication or computatio e also treat the case when the transmitter and receiver have
An information theoretic approach to secret key generati&Xmm_etrIC and causal CSl. This is motivated by th_e_ appb_catl

between two or more terminals was pioneered in [3] [4{ fading <_:hanne|s where there has b_een a significant imteres
and subsequently extended in [5]-[8]. In the setup consile Irea(:y. Finally, atls recently propose(:] n [2?] lO\.’tVr? ' P(;uods

in these works, the transmitter communicates to a Iegit’rma%ecre -message transmission over channeis with statmeara
gﬁ that exploit secret-key agreement as a building bleck c

receiver and the eavesdropper over a memoryless broad . : . )
channel and is interested in generating a secret key shatted € strictly better than straightforward extensions of wipe
codebooks.

the legitimate receiver. In certain cases the legitimataiteals
also exchange an unlimited number of messages over a publi!:n th? pres_ent paper we or_1|y focus on t_he case when there
discussion channel. There has been a significant interestSil'© discussion channel available. We point the reader to ou
developing practical approaches for generating Sharemsegonfer_enc_e Papers 11, [2] fqr some results on the case when
keys between two or more terminals based on such techninga ,Ubl'c dlscussm_)n channel is av_a|IapIe._Not|ce Fhat otupse
see e.g., [9]-[16] and references therein. iffers from thevwretqp channel with sple information [24]—

In the present work, we study the secret key agreeme{ap] that study the wiretap channel with state parameteds an

capacity over a broadcast channel controlled by a randdffl!'"® thgt the trzlatns_rrgFtert s?r?dt?hconf;](jennal messarg?tot
state variable. The importance of studying channels wifffeelver. Lur results indicate that the achieva esekaye.ae

can be significantly higher compared to the results in [24]-
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R state n — oo, we have thaPr(x # /) < &, and
1
EH(K:) Z R_anv (3)
\ 4 Y and
Eavesdropper 1 . n
Sender > channel EIO{’ ye ) S En- (4)
—»|  Recelver The largest achievable rate is the secret-key capacity.
l l C. Extended Model
K K

In our proposed model we are assuming the state variable
Fig. 1. Wiretap channel controlled by a state parameter.chlaenel transition g onIy known to the transmitter and not to the receiving

probability p,,, . |s is controlled by a state parameterThe entire source yarmingls. A more general model involves a state variatge th
sequence™ Is known to the sender but not to the receiver or the eavepdrop

The sender and receiver generate a secrekkathe end of the transmission. Can be decomposed ingo= (s;, s, s, so) Where the sequence
sy is revealed noncausally to the sender whergaand s

are revealed to the legitimate receiver and the eavesdroppe
our knowledge, it does not have the results in the presemspectively whilesy is not revealed to any of the terminals. It
paper such as an upper bound on the secret-key capacity,tthas out that the model in section Il-A includes this exthd
asymptotic optimality of the lower bound for the Gaussiamodel. The secret-key capacity for this new model is idehtic
case or the secret-key capacity for the case of symmetric C®lthe secret-key capacity of a particular model in sectiof |

defined by:y, = (,s-) andy. = (¥e,s.) and the channel

Il. PROBLEM STATEMENT transition probability

A' Channel MOdeI p(gr,ye|5t,x) = Zp(yT7y€|8075Ta Se,St,I)p(SO,ST, 86|St)'
The channel model has three terminals — a sender, a 50 )

rﬁcelvEr and an ea\(esldropper. Tg_e sender commlumcathes "Wulg equivalence can be established by noting that the mddifie
the other two terminals over a discrete-memoryless-canfg e preserves the same knowledge of the side informatio

C?_””O”ed by a rano_lom state parameter. The transﬁmnq:»rotgequences as the original problem, the rate and equivacatio
bility of the channelig,, .. s(-) wherex denotes the channel,, .o only depend on the joint distributigrty”, 57, 2", s7")

input symbol, whereag. and y. denote the channel outputy g for any input distributiop(z|s7), the extended channel
symbols at the receiver and the eavesdropper respectiedy. szitisfies

symbol s denotes a state variable that controls the channe
transition probability. We assume that it is independerd an
identically distributed (i.i.d.) from a distributiops(-) in each
channel use. Further, the entire sequesités known to the
sender before the communication begins. where each term on the right hand side of (6) obeys (5).

As explained in section II-C the model generalizes easily We omit a detailed proof in interest of space and point

to take into account correlated side information sequencet@ the reader to [28, pp. 17—25] [29, Chapter 7, pp. 7-54]
each of the receivers. for an analogous observation. Note that our model inherentl

uses the asymmetry in channel state knowledge between
, the eavesdropper and the legitimate receiver for secret key
B. Secret-Key Capacity generation. While as discussed in this subsection, it can be
A lengthn encoder is defined as follows. The sender sarpasily extended to incorporate receiver side informatfon,
ples a random variables, from the conditional distribution simplicity in exposition we will suppress the availabilitf
Pm,|s» (+|s"). The encoding function produces a channel inpside information at the receivers.
sequence

n
p@r g2l s7) = [ p@reis Geilwi, s02), 6)
=1

X" = fn(my,s") 1) 1. M AIN RESULTS

and transmits it oven uses of the channel. At timé the We summarize the main results of this paper in this section.
symbol x; is transmitted and the legitimate receiver and the

eavesdropper observe output symbglsandy.; respectively, )

sampled from the conditional distributiop,, |, .(-). The A Capacity Bounds

sender and receiver compute secret keys We first provide an achievable rate (lower bound) on the

n n secret-key capacity.
K = gn(mx,s"), = hn(y"). (2) y capacly

Theorem 1: An achievable secret-key rate is
A rate R is achievable if there exists a sequence of encoding R (s ye) — I(u: ye) 7
functions such that for some sequenge that vanishes as - pnllyaf( (3 ¥ (13 ye),



where the maximization is over all auxiliary random varebl where z, ~ N (0,1) and zz ~ N (0,1 + A) denote the
u that satisfy the Markov condition — (x,s) — (v, y.) and additive white Gaussian nose and are assumed to be sampled
furthermore satisfy the constraint that independently. The state parameter~ N(0,Q) is also
sampled i.i.d. at each time instance and is independenttbf bo
I(u;yr) = I(u;s) 2 0. (8) z, and z.. Furthermore, the channel input satisfies an average
power constrainE[x?] < P. We assume&” to be non-causally
The intuition behind the coding scheme is as follows. Updtnown to the sender but not to any other terminals.
observing s, the sender communicates the best possibleThus the parameteP denotes the signal-to-noise ratio, the
reproductionu™ of the state sequence to the receiver Nowarameter) denotes the interference-to-noise-ratio, whereas
both the sender and the receiver observe a common sequehaogenotes the degradation level of the eavesdropper.
u™. The set of all codewords™ is binned into2"®  bins One possible application of the proposed model is secret-ke
and the bin-index is declared to be the secret key. Nageneration from multimedia signals. Consider a multimedia
that the problem of communicating a state sequence witlansmission system, designed so that the legitimate @ser r
common knowledge to the receiver is studied in [30], [31feives a better signal quality compared to the undesireguse
This setup requires that the reconstruction sequencdysatis In addition suppose that it is determined that the legitenat
certain distortion measure with respect to the state seguém users are able to tolerate a small amount of additional per
contrast the common reconstruction sequence in this probléetter distortionP. One can then carefully introduce this excess
is an intermediate step used to generate a common secret Kestortion in order to generate a common secret-key between
While we do not have a matching upper bound to Theorentlie sender and the receiver. Just like the dirty paper channe
the following result provides an upper bound to the secest-kis an information theoretic model for digital watermaking

capacity that is amenable to numerical evaluation. systems [22], our proposed is the corresponding informatio
Theorem 2: The secret-key capacity is upper bounded bheoretic model for the above mentioned application.
C < R™", where We now provide lower and upper bounds on the secret-key
+ . _ capacity. We limit our analysis to the case whéh> 1.2
R = pn,fgf:ep I?ﬁfj(x’ si velye), ©) Proposition 2: Assuming that? > 1, a lower bound on the

secret-key agreement capacity is capacity is given by,

A(P+Q + 2p/PQ) ) (12)
P+Q+14+A+20/PQ)°

whereP denotes all the joint distributions; | |, . that have
the same marginal distribution as the original channel. 1
The intuition behind the upper bound is as follows. We R~ = ilog <1+
create a degraded channel by revealing the output of the
eavesdropper to the legitimate receiver. We further assamahere|p| < 1 and
channel with two inputgx™,s™) i.e., the state sequencé& 1
is not arbitrary, but rather a part of the input codeword with Pl—p*)=1- POl (13)
distribution ps. The secrecy capacity of the resulting wiretap TR+
channel is then given by(x, s; yi|ve)-
Note that the problem of secret-key agreement is differ- " .
ent from the secret-message transmission problem corsiddp 9'VEN by,
in [24]—[26]. This is because the secret-key can be an artyi_tr R+ 1 | ) A(P +Q +2PQ)
function of the state sequence (known only_ to the transnjitte _ — 598 ( + PrQt1l+AT zm)
whereas the secret-message needs to be independentifunctio

of the state sequence. For comparison, the best known I0WeL,, pe readily verified that the upper and lower bounds are
bound on the secret-message transmission problem is stgigds i several interesting regimes. In Fig. 2 we numdyical

below. . , lot these bounds and state some properties below. We omit
Proposition 1:  [24]-[26] An achievable secret messag%.Ie proof due to space constraints.

rate f(_)rfthe W|retapCcSh|arjneI with noncausal transmiter nhhn Proposition 4: The upper and lower bounds on secret-
state information (CS) is capacity satisfy the following

Proposition 3: An upper bound on the secret-key capacity

(14)

R = max I(u;yy) —max (I(u;s), I(u;ye)). (10) 1
PusPxlu,s R —R_< 3 bit/symbol (15)
We note that the secret-key rate (7) is in general stricttyebe lim R, —R_—0 (16)
than the secret-message rate (10). P00
Qlim R —R_=0 a7)
—00

B. Secret Keys from Dirty Paper Coding

We study the Gaussian case under an average power
constraint. The channel to the legitimate receiver and theInterestingly in the presence of public discussion, we hawen able to

. . characterize the secret-key capacity [1].
eaveSdmpper IS eXpressed as: 2The constraintP > 1 guarantees that (13) has a solution dnMore
generally lower bound is also valid for all values Bfand @ for which (13)
(11) has a solution inp however the constrainf” > 1 suffices to obtain the

Ye =X+ S5+ Z, optimality results in Prop. 4.

Ve =X+Ss+z
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Fig. 2. Bounds on the capacity of the “secret-keys from di&per” channel. In the left figure, we plot the bounds on dfyas a function of SNR (dB)
when@ = 10 dB andA = 10 dB. The upper-most curve is the capacity with public-distus [1] whereas the next two curves denote the upper and lowe
bounds on the capacity as stated in Prop. 3 and Prop. 2. Tteldnirve is the secret message transmission lower boundyaiated for a jointly Gaussian
input distribution. In the right figure we vary the degradatievel at the eavesdroppéx (in dB) and compute the secret-key rates for= 2 andQ = 2.

The upper-most curve is the secret-key capacity with pudiicussion [1], the next two curves are the upper and therlbwends, whereas the dotted curve
is the secret message transmission rate evaluated for i@@ausputs.

C. Symmetric CH have knowledge 0§". The second tern (s|y.) is the rate of

Consider the special case where the state sequeiscaiso the additional secret key that can be produced by exploiting
revealed to the legitimate receiver. In this case we havet¢ fact thats™ is only known to the sender and the legitimate

Theorem 3: The secret-key capacity for the channel modéises only current state to decide which codebook to use.
in section I1-A when the state sequengeis also revealed to Furthermore, since the state is known to the sender and

the decoder is given by receiver, the second term is also causal.
We note that the capacity expression (18) captures an
Coym = pyhax I(u; yils) = I(u; yels) + H(slye), (18) interesting tension between two competing forces in chapsi

S . . the optimal distribution. To maximize the contribution et
where the maximization is over all auxilary random variablg sie optained from the multiplexed wiretap codebook, it is
u that obey the Markov chaini — (x.s) — (%.¥)- desirable to seleat to be strongly correlated with However
Adc_zlltlonally it suffices t_o limit the cardinality of the auidry doing so will leak more information aboutto the wiretapper
variable t0|_3|(1 + |X_|) in (18). _and reduce the rate contribution of the second codebook. To
_ The achievability in (18) follows from (7) by augmentingyayimize the contribution of the common state sequence, we
Ye = (%,s). Observe that (8) is redundant d6u;y:,s) — need to select an input that masks the state sequence from the
I(u;s) > 0 holds. Furthermore the expression in (7) can hgyyesdropper [32]. We illustrate this tradeoff via an exiamp
simplified as follows in section 111-D.

R™ = max I(ujy,s) — I(u;ye) Finally it can be easily verified that the the expression (18)
PusPx|s,u simplifies in the following special case.
= max I(u;y|s) — I(u; yel|s) + I(s; ulye) (19) Corollary 1: Suppose that for eack € S the channel
Puobrlso Dyoyels—s.x(Ur, Ye| s, ) is such that the eavesdropper’s channel
— I(u: I(u: H 20 Pyr ye|s=s,x\Ur> Y o .
—p%ﬁ’fu (U5 ye|s) = I(u; yels) + H(s|ye) (20) s less noisy compared to the legitimate receiver's channel
’ Then the secret-key capacity witst* revealed to both the

where the last relation follows by noting thatifis an optimal legitimate terminals is

choice in (19) then by selecting* = (u,s) will leave the
difference in the two mutual information terms unchanged C = max H(s|ye). (21)
but increase the second terfi(s|y.) as specified in (20). Pxls

Notice that (20) is identical to (18). The converse followsntuitively, when the wiretap channel cannot contributette
by an application of Csiszar's Lemma and is provided igecrecy, (21) states that transmitter should select art that

section VI-B masks the state from the output as much as possible.
We provide another achievability scheme for Theorem 3

that only requires causal knowledge &f at the encoder. The . .

scheme is based on the following interpretation of (18). TH& SYmmetric CS: Numerical Example

termI(u; y:|s)—I(u;ye|s) is the rate of a multiplexed wiretap It can be easily seen that for the dirty paper coding example
codebook constructed assuming that all the three terminadssection IlI-B, the secret-key capacity whers also revealed
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Fig. 3. The achievable secret-key rate as a fraction of pailecated to the Fig. 4. Optimal fraction of power that must be allocated te gtates,, = 0
states,, = 0 and SNR = 17 dB. The solid curve denotes the secret-key ratetp maximize the secret-key rate with Gaussian inputs. Theecmarked with
the dashed curve denotes the rate of the secret-messade thehtlotted curve  a (x) denotes the case of public discussion while the other cdermtes the
denotes the conditional entropy terf(s,|se = 1,ye = ye) in (25). The  case of no public discussion.

upper solid and dashed curves denote the case of publicsgdiscuwhile the

other solid and dashed curves denote the case of no pubdiusdisn.

to the legitimate receiver is infinity. More generally higllee In Fig. 3 the solid curves show the secret key rate with
entropy ofs, higher will be the gains in the secret-key capacitgnd without public discussion, while the dashed curve is
with symmetric CSI. In this section illustrate the secreyk the entropyH (s,|sc = 1,).) and the dotted curve denotes
rate for an on-off channel for the receivers: contribution of the wiretap code. Note that in general thee
tradeoff between these two terms. To maximize the condition
(22) entropy we sefy = P, = P/2, while to maximize the wiretap
Yo = SeX + Ze, codebook rate we need to s& = 0 and P, = P. The
where boths,, s, € {0,1}, the random variables are mututesulting secret-key rate is maximized by selecting a power
ally independent andr(s, = 0) = Pr(s. = 0) = 0.5. allocationthatbalances these two terms. The optimumidmact
Furthermore we assume thgt is revealed to the legitimate Of power transmitted in the statg = 0 as a function of the
terminals, whereas the eavesdropper is revegled (s, y.). Signal to noise ratio is shown in Fig. 4. Note that no power is
The noise random variables are mutually independent, zdf@nsmitted when the signal-to-noise ratio is betow-2.5d 5.
mean and unit variance Gaussian random variables and ¥ethis regime the channels are sufficiently noisy so that
power constraint is thak[x2] < P. H(sr|ye,se = 1) = 1 even with Py = 0 and hence all the

We evaluate the secret-key rate expression for Gaussfilable power is used for transmitting the secret-messag
inputs i.e.,u = x ~ N(0, ) whens, = 0 andu = x ~ the signal-to-naise ratio increases more information netigg
N(0, P1) whens, = 1. Further to satisfy the average powefr 9€tS leaked to the eavesdropper and to compensate for
constraint we have thaP, + P, < 2P. An achievable rate this effect, a non-zero fraction of power is transmitted whe

=X+ 2z

from Theorem 3 sr = 0.
R = I(x; ye|sr) = I(x; Ye|sr) + H(sr|Ye) (23) IV. SECRET KEY GENERATION WITH NONCAUSAL
1 1 1 In this section we provide Proofs of Theorem 1 and 2 i.e.,
- §log(1 +P1) + §E H(p(ye), 1= plye))] + 92’ (25 the coding scheme and the upper bound for the secret key

where we have introduced agreement problem.

plye) = 77 Ny (0, Po +1) (26) A. Proof of Theorem 1

0. (0, P+ 1)+ My, (0. Pr+-1) The coding theorem involves constructing a common se-
the aposterior distributio®r(s, = 0[y.) and the notation quenceu” at the legitimate terminals and using it to generate
N, (0,0?) denotes the zero mean Gaussian distribution withsecret key.
variances? evaluated ay. and where (25) follows through a 1) Codebook Generation: Assume that the input distribu-
straightforward computation. tion is such thatl (v; y;) > I(u;s) as required in Theorem 1.

In Fig. 3 we numerically evaluate this rate fSNR = 17 Let ¢, be a sequence of non-negative numbers that goes to
dB. For comparison we also plot the corresponding rate wiglero such thae,, < I(u;y;) — I(u;s).
public discussion [2] « Generate a total of’ = 2"(Z(ux)~2¢1) sequences. Each

1 1 1 sequence is sampled i.i.d. from a distributjgri-). Label
Rase = 3 10g(1+2P1)+§E [H (p(ye), 1—17(3/6))]4‘5- (27) themu?, .

T
NNTAR
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Fig. 5. Codebook for the secret key agreement problem. Adbta 271 (43yr)
codewords are generated i.izg,(-) and partitions int@”% bins so that thare
are2n!(t:ve) sequences in each bin. Giveft, a jointly typical sequence™
is selected and its bin index constitutes the secret key.

» Select a rateR = I(u; yy) — I(u; ye) — €, @nd randomly
partition the set sequences in the previous step 2fi

bins so that there arg"(/(vy:)—<n) sequences in each

1 1

~H Y — ZH (4" ™

—H(k u"ye) = —H(u"|ye', k)
ni,,n 1 ni,n

—H(Ll |ye ) - EH(U |ye 7’%)

—H(u"[y;") —en

—H (kly")

where the last step follows from the fact that there are
T, = 2nU(uye)=en) sequences in each bin. Again applying
the packing lemma we can show that with high probability
the eavesdropper uniquely finds the codewofdL) jointly
typical with y* in this set and hence Fano’s Inequality implies
that

1
_H(un|yenv’%) S En-
n

It remains to show that

LH( ) > 1) ~ 1) — on (1)

bin. : Using the chain rule of the joint entropy we have
2) Encoding: . 1 1 1
« Given a state sequene@ the encoder selects a sequence H (u"|y)) = —H (u") + —H (y"|u") — —H(y2") (32)
n n n

u™ randomly from the list of all possible sequences thdt 1 1 1
are jointly typical withs™. Let the index of this sequence = —H(u") + —H (y2}|u",s") — —H(y2) + =I(s"; y2'|u™).
n n n n

be L.

o Attime i =1,2,...,n the encoder transmits symbsgj
generated by sampling the distributipg, s (-|u, s;).

3) Secret-key generation:

« The decoder upon observing® finds a sequence™
jointly typical with y.*.

« Both encoder and the decoder declare the bin-index of

u™ to be the secret-key.
4) Error Probability Analysis: An error occurs only if one
of the following events occur:

& ={(u"(1),s") ¢ T"(u,s) forall 1<I<T}  (28)

£ = {(u" (L), y") & T2 (u, 1)} (29)
& = {(u" (1), y") € T(u, ,) for somel # L} (30)

Since the number of sequencEs> 2"/(%*) it follows from
the Covering Lemma [29, Chapter 3] thBt(E,) — 0 as
n — oo. Furthermore le€f = {(u",s",x™) € T} (u,s,x)}
and Pr(&f) — 1 asn — oo for any ¢/ < e. Since
p(y|u™(L),x™,s™) = [Lie; p(yri|ui, xi, s;) it follows from
the conditional typicality Lemma [29, Chapter 2] tHat(E2N
&) — 0 asn — oo. Finally since everyu™(l) is generated
i.i.d. p,(u;) and is independent of™ for I # L it follows
from the Packing Lemma [29, Chapter 3] tHat(£3) — 0 if
T < ond(uyr),

5) Secrecy Analysis: We need to show that for the proposetg;
encoder and decoder, the equivocation at the eavesdro%

satisfies
EH(KL)/:) :I(U;Yr) _I(u;ye)+0n(1)7 (31)

whereo, (1) is a term that goes to zero as— oc.

Note that while the key: in general can be a function of

(33)

We now appropriately bound each term in (33). First note that
since the sequenag® is uniformly distributed among the set
of all possible codeword sequences, it follows that

1 n 1
gH(U )= n log, [C|
= I(U;Yr) —2¢en (34)

Next, as verified below, the channel to the eavesdropper
(u™,s™) — yI, is memoryless:

pyg\u",s" (y;l'unv Sn)
= Z pyen \u",s”,x" (yg|un, Sn7 ./L'n)pxn ‘un75n ($n|un, Sn)

TEX™
n
= Z prﬁ|u,s,x(ye,i|ui7 Si, xi)px|u,s(xi|uiu Si)
zreXn =1
n
= H Z pye\u,s,x(ye,iluiu Siy :Ei)px\u,s(x”uia Sz)
i=lz,eX

n
= pre|u,s(ye,i|uiu Si)

i=1

he second step above follows from the fact that the channel
memoryless and the symbg] at timei is generated as a
fiktion of (u;, s;). Hence we have that

H(yg|s", ZH Ye, ilsis ;). (35)

Furthermore note that

(s™, my) as indicated in (1), in our coding scheme the secret lH(yg‘) < ZH(M)' (36)

key is a deterministic function af” and hence we have



Finally, in order to lower bound the terd(s™; y'|u™) we
let J to be a random variable which equals 1(sf*, u™) are
jointly typical. Note thatPr(J = 1) =1 — o0,(1).

1 1 1

ZI(s™ v ™) = ZH(s™ ™) = ZH(s™u™. y"

(") = —H(s"|u") — —H(s"]u", )
1 1

> ~H(s" 0", ] = 1)Pr(J = 1) = —H(s" ", 7)

1 1
SH(s"|u™, J =1) — —H(s"|u", y™) — on(1
—H(s"|u", ] = 1) = —H($"u", ") — oa(1)

1
> H(slu) — ~ H(s" ", ") = on(1)

> H(s|u) — % ZH(5i|Ui7YB,i) —on(1)

i=1

where (37) follows from the fact that* is an i.i.d. sequence

and hence conditioned on the fact tiat, v™) is a pair of

typical sequence there a2&? (slv)—non(1) possible sequences

sn

Received Point
Transmitted Point

B Uncertainty sphere
at eavesdropper

Substituting (34), (35), (36) and (38) in the lower bound)(33
and using the fact that as — oo, the summation convergesFig. 6. Secret-key agreement codebook for the dirty papenmél. The

to the mean values,

—H(kly)

= I(u; y2) + H(Yelu,s) — H(ye) + H(s|u)—H(s|u, ye) —0n(1
= I(u;yr) = I(yes s|lu) — I(ye; u) + I(ye; s|u) — on(1)

= I(u;yr) = I(ye; u) — on(1)

as required.

B. Proof of Theorem 2

A sequence of length-code satisfies:
LH(kly) < e (39)
n

LH () > TH(R) ~ e (40)

where (39) follows from the Fano’s inequality since th&aussian random variable independentaind let £{xs|

receiver is able to recover the secret-kegiven y* and (40)

transmit sequence™ is selected so thai™ = x™ + s™ is a sequence in the
codebookC. The smaller spheres above denote the noise uncertairtig &-t
gitimate receiver. Their centres are the codewords. i®ur binning of smaller
spheres guarantees that the noise uncertainty sphere eatesdropper has
all possible messages, resulting in (asymptotically) gréquivocation.

Finally since the secret-key capacity only depends on the
marginal distribution of the channel and not on the joint
distribution we can minimize over all joint distributiongttv
fixed marginal distributions.

V. GAUSSIAN CASE

We develop the lower and upper bounds on secret-key
agreement capacity for the Gaussian channel model.

A. Proof of Prop. 2
Recall thats ~ A(0,Q). Choosex ~ N(0,P) to be a

pVPQ. Selectu = x + as and the lower bound follows by

is a consequence of the secrecy constraint. Furthermore, riyaluating

thatx — (x™,s™) — (v, y2) holds as the encoder generates

the secret key:. Thus we can bound the rafe= 1 H(x) as
below:

nR < I(k; y'lye') + 2ney
< I(k,s™, X" M yd) + 2ney
SI(s™, X"y ye) + H(k|s™, x™) + 2ne,
= I(s", X"y |y + 3ney, (41)
< Z I(Siy X3 Yr,ilYe,i) + 3nep (42)
i=1
< nl(x,s; yelye) + 3nen (43)

where (41) follows from the Fano Inequality becausean
be obtained from(x™, s™), (42) from from the fact that the

channel is memoryless and the last step follows from the

concavity of the conditional entropy terifx, s; y;|v.) in the
input distributionp, s (see e.g., [33]).

R=1(u; ) — I(u; ye)
= h(“b’c) - h(“b’r)

Further evaluating each of the terms above wite x + as,
note that

h(ulye) = h(x + as|x + s+ z)
1
3 log 2me (P +02Q + 2ap\/PQ —

(P+aQ+(1+ a)p@F)
P+Q+14+A+2p/PQ

and

h(ulyy) = h(x + as|x + s+ z)
1
3 log 2me (P +02Q + 2ap/PQ —

(P+aQ+p(1+ a)\/PQ)Q)
P+Q+1+2/PQ '




This yields that VI. SYMMETRIC CSI
We establish the secret-key capacity for the case of sym-
A metric channel state information i.e., wheh is revealed to
14 LQle—1)2(-p?) both the transmitter and the legitimate receiver.
P+a?2Q+2pav/PQ

+ %1og < PrQ+1+2pvPQ ) . (44) A. Achievability for Theorem 3

P+Q+1+A+2p/P . . . . -
@ pVEQ As explained in section I1I-C the achievability result fmlls
Note that the first term in the expression above is maximizegtectly from Theorem 1 by replacing. with y, = (s, 5)

1
R:§log 14

whena = 1. In this case we have that in the lower bound expression. We nevertheless provide an
1 1+ A)P+Q+1+20/PQ alternate scheme that only requires the knowledge of causal

R = > log ( i ) (45) CsSI at the transmitter. The idea is to use a different wireta
2 P+Q+1+A+2p/PQ P

codebook for each realization of the state variable. Inqaer
= 1log (1 + AP +Q+2pVPQ) ) (46) suppose thalS = {si1,...,sy} denote the set of available

2 P+Q+1+A+2p/PQ states. Since the encoder and the decoder are both aware of
as required. the state realizatios; and can use this common knowledge
To complete the proof we show that the choige= 1 is O select the appropriate codebook for transmission. These
indeed feasible whe® > 1 and (P, p) satisfy (13). codebooks are constructed assuming that the eavesdrapper i
In particular the constraint (8) requires that also revealed the state. Suppose that we fix the distribution
pu,x\s:si(') in (18) Let
h(uls) = h(uly)
R = I(u; ye|s = 8;) — I(u; ye|s = s; 48
= h(x|s) > h(x + s|x + s+ z) (U3 yels = 1) = I(u; yels = s:) (48)
1 1 P +Q+20/PQ andp; = Pr(s = s;). For eachi:_1,2...,M,aW|retap
=5 log P(1—p?) > 3 log <P O+ +p2p\/P)_Q : codebook of lengtmp; and rateR; is constructed and used

to transmit a message. Another independent key;, of rate

Rearranging, Rs = H(sly.) is then generated by exploiting the fact tlat
, 1 is not known to the eavesdropper.
Pl—pH)>1- >1—-— ion:
(1—p7) = PrOTi 2,0 PrqQid 1) Codebook Construction:

(47) o For eachi = 1,..., M generate a codeboak of rate
_ R; — 2¢,, and lengthn; = n(p; — €,) by sampling the
as required. codewords i.i.d. from the distributiop,s(-|s;).

It is worth comparing the choice of the auxiliary variable , Construct a codebook, where the set of all typical
u = x + s in the present problem with the choice of optimal  sequences™ of size 27(H(s)=2x) is partitioned into

u in the dirty paper coding problem [34]. While the input 2n(Rs—<n) pins each containing™(!(sve)—¢») sequences.
is independent of in [34], as illustrated in Fig. 6 the optimal
x in the secret-key problem has a component alenghis is
because scaling the interference sequence increasesthé se
key rate. Secondly recall that in [34] we find the auxiliary
codewordu™ that is closest tons™ wherea = . In
contrast this MMSE scaling is not performed in the secret-*

2) Encoding:

e For eachi = 1,..., M the transmitter selects a random
message:; and a random codeword sequen¢é in the
corresponding in the corresponding bin@f

Upon observings(j) = s; at timet = j, it selects the
next available symbol ot;"* and samples the channel

key problem. input symbol from the distributiomp,s .
« At the end of the transmission it looks for the bin index
B. Proof of Prop. 3 of s™ in Cs and declares this to be,.
We evaluate the upper bound in Theorem 2 for the choice® The ov_erall secret-key i1, .. ., ks, Ks)-
Z. = z + z5, Wherezs ~ N(0, A) is independent of,. 3) Decoding:
o« The decoder divides y* into subsequences
1, .., yat"), where the subsequenceyg;” is
I(s, x; yrlye) = h(yrlye) — R(yrlye, x s) obtained by collecting the symbols gf whens = s;.
= h(velye) — h(z|z) o Fori =1,...,M it searches for a codewort]’ in C;

2 that is jointly typical with y;"*. If no such codeword
< 1log<P+Q+1+2\/P _ (P+Q+1+2VPQ) )—

or multiple codewords is found an error is declared.
1 P+Q+1+a+2/PQ Otherwise the bin index of]" is taken as declared as
— —log (1 — _) the messagé;.

Through standard arguments it can be shown that the error
where we have used the fact that the conditional entropyobability in decoding at the legitimate receiver vansias
h(y:|ve) 1s maximized by a Gaussian distribution [35]. The: — oo provided we select the rates according to (48). We
above expression gives (14). omit the details due to space constraints.



4) Secrecy Analysis: First, consider splittingy* = and finally from the chain rule
(yjll,._..,y;ll\f?;) where the subsequengé}j is obtained by 1 . 1
grouping the symbols o whens = s;. From the con- ﬁH(yC ) < EH(Yei) — H(ye) (60)
struction of the wiretap codeboak it follows that - .
asn — oo. Substituting (55), (58), (59) and (60) into (54)

1 n; 1 , completes the claim. [ |

S H(kily") > —H(k;) — en, =1,...,M (49 ; .

n (f%b/eg )2 n () =< J (49) The secrecy analysis can be completed by combining (51)
Next since the messages are selected independently andaf@ (52) as shown below.

encoding functions are also independent it follows that 1 M n 1 M 1 n
EH(ﬁl ’Kzslyc) = EH(lil |l€87yc)+ﬁH(K;S|yc) (61)

1
—H(Kj|K1y ey Kjm1y Kl ooy KM, Yo'y ST) 1 n n 1 n
n 1 ! .71 a > EH(K{WB ’ye)—i_EH(liS')/e) (62)
= —H(k;ly™) > —H(k;) — en 50 1
i) = 5 ) = O > Huryls) — Huryels) 4 LHG) — o) (69
Thus by the chain rule we have that 1 - 1 I
) 2 1(us yils) =1 (us yels) + —H (s"|ye) = ~H(s"|ye', ks) = 0n(1)
EH(m,...,/iz\ﬂy:,s”) > Ro—¢p (51) (64)
1 n n
where Ry = H(ki,....5u) = I(usyils) — I(uiyels). To = L(uiyels) = I(u; yels) + H(slye) — —H(s"|ye', 5) — on(1)
complete the secrecy analysis we require the following-addi (65)
tional result — I(u )
) o = s vels) — I(u; yels) + H(s|ye) — 0, (1 (66)
Lemma 1. For any input distributionp, s such that ( 2 ( 2 (slye) @
I(u;y:|s) > I(u;y.|s) we have that where (62) and (64) follow from the fact that, is a deter-
1 ] ministic function ofs™ while (63) follows by substituting (51)
—H(s"|y?) > —H(s|ye) — on(1). (52) and (65) follows by substituting (52) while (66) follows fro
n n the fact that H (s"|y?, xs) — 0 asn — oo, since from the
Proof: First observe that we can write: construction ofC, there are at-mos2™((s¥e)—<n) sequences
1 1 1 1 associated with any given bin. Hence the decoder can decode
EH(S"D/S) = EH(ye"|5n) + HH(SH) - ﬁH(y:) (53) s™ with high probability and hence Fano’s inequality applies.
:EH(yc |S y U )+EI(U i Ye |S )+7’LH(S ) nH(yc ) B. Converse

54
(54) For any sequence of codes indexed by the codeword length

We now observe the following. Since the channel from, we show that the secret key rate is upper bounded by the
(u™,s™) — yI is memoryless, capacity expression (18) plus a term that vanishes to zero as
the block length goes to zero. By applying the Fano inequalit

lH(yn|5n u") = 1 ZH(V |si, ui) = H(ye|s,u) (55) ©On the secret-key rate, we have that for some sequenteat
n e ) n ei |21y Yg el

=1 approaches zero asgoes to infinity that
asn — oo. Next note that by construction nR < I(k;1) +ne, < I(k;s™,y.) + nen (67)
lH(un|sn) = I(u; yis) — 2en, (56) V\{here the last step follows from the data processing indigl_JaI
n sincel/ = h,(s™, y;*). Furthermore from the secrecy condition

and sincel (u; yi|s) > I(u; ye|s) it follows through standard ! (k;ye') < nen and hence,
calculations that nR < I(k;s™, y™) — I(k: ™) + 2nen (68)

1 n
—H(u"™|s", y™) < I(u;ye|s) — I(u; yels) — o, (1 (57) i i

T 1she) < Huiels) = Tuiyels) = on(1) <3 Oy s ) — L Yealyl e ).
Combining the above two inequalities, =1

(69)
1 .
—I(u™; y2s™) > I(u; yels) — on(1) (58) where the second step follows from the Csiszar sum-
. " . - identity [29, Chapter 2] applied to difference of mutualdanf
Since the sequenc® is sample i.i.d. we have mations. The derivation is analogous to [37] and is omitted.
1 If we let vi = (yi 'yl 1.57) andu; = (k,v;) note that
EH(S") = H(s) (59  vi = u; = (xi,5) = (Vri» yer) holds. Maximizing over each
term in the summation we obtain that
SIntuitively for any typical s, the total number of sequences® is
onl(tyels) The probability that a sequenag® is jointly typical with y R < max I(u;yr,s|v) — I(u; ye|v) + 2e, (70)
is 2—nI(uyels) A precise argument involves bounding the expected size of Puwv.x
the list and invoking a concentration result. See c.f. [36mina 1] for an =max [(u;yr,s) — I(u;ye) + 2ep, (72)

analogous calculation. Pu,x
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where the second step follows from the fact that the map4] C. Ye, A. Reznik, and Y. Shah, “Extracting secrey frorinjty Gaussian
imizing over v is redundant since (70) involves a convex random variables,” ifProc. Int. Symp. Inform. Theory, Seattle, WA, June

combination of I(u; y;, 5|V = v;) — I(uyyelv = _Ui) and [12] B. Aiimi-Sadjadi, A. Kiayias, A. Mercado, and B. YenéRobust key
hence we can replace with the term that results in the largest generation from signal envelopes in wireless networks,14th ACM

value. We recover (18) from (71) by using an approach similar Z‘ifgefence on Computer and communications security, 2007, pp. 401~

to (20)' [13] T. Aono, K. Higuchi, T. Ohira, B. Komiyama, and H. SasapRWireless
secret key generation exploiting reactance-domain scalgponse of
multipath fading channelsJEEE Transactions on Antennas and Prop-
VII. CONCLUSIONS agation,, vol. 53, no. 11, pp. 3776—3784, 2005.
. . L. Xiao, L. Greenstein, N. Mandayam, and W. Trappe, H&rprints in
We StUdy the secret key agreement capacity over a ere{é the ether: Using the physical layer for wireless authetitiod in |IEEE
channel controlled by a state parameter. Lower and upper Int.. Conf. on Comm, 2007, pp. 4646—-4651.

bounds on the capacity are established when the state smguéf?] M. Bloch, J. Barros, M. R. D. Rodrigues, and S. McLaughtiWireless

; ; information-theoretic security,IEEE Trans. Inform. Theory, vol. 54,
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obtained by creating a common reconstruction sequence[18f S. Mathur, W. Trappe, N. Mandayam, C. Ye, and A. RezniRa*
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