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Abstract—We study the capacity of secret-key agreement over
a wiretap channel with state parameters. The transmitter com-
municates to the legitimate receiver and the eavesdropper over
a discrete memoryless wiretap channel with a memoryless state
sequence. The transmitter and the legitimate receiver generate
a common key that must be concealed from the eavesdropper.
We assume that the state sequence is known non-causally to
the transmitter and no public discussion channel is available.
We derive lower and upper bounds on the secret-key capacity.
The lower bound involves constructing a common reconstruction
sequence at the legitimate terminals and binning the set of
reconstruction sequences to obtain the secret-key. For thespecial
case of Gaussian channels with additive interference (secret-keys
from dirty paper channel) our bounds differ by 0.5 bit/symbol and
coincide in the high signal-to-noise-ratio and high interference-
to-noise-ratio regimes. For the case when the legitimate receiver
is also revealed the state sequence, we establish that our lower
bound achieves the the secret-key capacity. In addition, for
this special case, we also propose another scheme that attains
the capacity and requires only causal side information at the
transmitter and the receiver.

I. I NTRODUCTION

Secret keys are a fundamental requirement for any ap-
plication involving secure communication or computation.
An information theoretic approach to secret key generation
between two or more terminals was pioneered in [3], [4]
and subsequently extended in [5]–[8]. In the setup considered
in these works, the transmitter communicates to a legitimate
receiver and the eavesdropper over a memoryless broadcast
channel and is interested in generating a secret key shared with
the legitimate receiver. In certain cases the legitimate terminals
also exchange an unlimited number of messages over a public
discussion channel. There has been a significant interest in
developing practical approaches for generating shared secret
keys between two or more terminals based on such techniques,
see e.g., [9]–[16] and references therein.

In the present work, we study the secret key agreement
capacity over a broadcast channel controlled by a random
state variable. The importance of studying channels with
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state parameters [17]–[19] has become increasingly evident
in recent times due a variety of applications including fading
channels [20], broadcast channels [21] and digital watermak-
ing [22]. For example in fading channels, the state vari-
able could model the instantaneous fading coefficient of the
channel. In broadcast channels the state sequence models an
interfering message to another receiver while in watermarking
systems the state sequence represents a host sequence on
which information message needs to be embedded. In fading
channels we assume that the state sequence is revealed to the
terminals causally while in the other two applications the entire
state sequence is known to the transmitter in advance. In this
paper, unless otherwise stated, we assume that the entire state
sequence is known to the sender non-causally. As we discuss
in the sequel, the seemingly more general case when each
receiver also has (a possibly noisy) side information can be
easily incorporated in this model.

The scenario we consider naturally applies to watermarking
systems when the goal is that of secret-key generation instead
of message embedding. We elaborate on this application when
discussing the Gaussian model of this problem. Furthermore
we also treat the case when the transmitter and receiver have
symmetric and causal CSI. This is motivated by the application
to fading channels where there has been a significant interest
already. Finally, as recently proposed in [23] lower boundson
secret-message transmission over channels with state parame-
ters that exploit secret-key agreement as a building block can
be strictly better than straightforward extensions of wiretap
codebooks.

In the present paper we only focus on the case when there
is no discussion channel available. We point the reader to our
conference papers [1], [2] for some results on the case when
a public discussion channel is available. Notice that our setup
differs from thewiretap channel with side information [24]–
[26] that study the wiretap channel with state parameters and
require that the transmitter send a confidential message to the
receiver. Our results indicate that the achievable secret-key rate
can be significantly higher compared to the results in [24]–
[26].

After the conference papers [1], [2] on which this paper
is based appeared, the authors became aware about a re-
cent work [27] where a similar secret-key agreement scheme
over channels with noncausal channel state information is
presented. This scheme is used in constructing a coding
scheme that provides a tradeoff between secret-key and secret-
message transmission. The paper [27] however does not fully
explore the problem of secret key agreement over wiretap
channels with state parameters. In particular to the best of
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Fig. 1. Wiretap channel controlled by a state parameter. Thechannel transition
probability pyr,ye|x,s is controlled by a state parameters. The entire source
sequencesn is known to the sender but not to the receiver or the eavesdropper.
The sender and receiver generate a secret keyκ at the end of the transmission.

our knowledge, it does not have the results in the present
paper such as an upper bound on the secret-key capacity, the
asymptotic optimality of the lower bound for the Gaussian
case or the secret-key capacity for the case of symmetric CSI.

II. PROBLEM STATEMENT

A. Channel Model

The channel model has three terminals — a sender, a
receiver and an eavesdropper. The sender communicates with
the other two terminals over a discrete-memoryless-channel
controlled by a random state parameter. The transition proba-
bility of the channel ispyr,ye|x,s(·) wherex denotes the channel
input symbol, whereasyr and ye denote the channel output
symbols at the receiver and the eavesdropper respectively.The
symbol s denotes a state variable that controls the channel
transition probability. We assume that it is independent and
identically distributed (i.i.d.) from a distributionps(·) in each
channel use. Further, the entire sequencesn is known to the
sender before the communication begins.

As explained in section II-C the model generalizes easily
to take into account correlated side information sequence at
each of the receivers.

B. Secret-Key Capacity

A lengthn encoder is defined as follows. The sender sam-
ples a random variablesmx from the conditional distribution
pmx |sn(·|sn). The encoding function produces a channel input
sequence

xn = fn(mx , s
n) (1)

and transmits it overn uses of the channel. At timei the
symbol xi is transmitted and the legitimate receiver and the
eavesdropper observe output symbolsyri andyei respectively,
sampled from the conditional distributionpyr,ye|x,s(·). The
sender and receiver compute secret keys

κ = gn(mx , s
n), l = hn(y

n
r ). (2)

A rateR is achievable if there exists a sequence of encoding
functions such that for some sequenceεn that vanishes as

n → ∞, we have thatPr(κ 6= l) ≤ εn and

1

n
H(κ) ≥ R− εn, (3)

and
1

n
I(κ; yn

e ) ≤ εn. (4)

The largest achievable rate is the secret-key capacity.

C. Extended Model

In our proposed model we are assuming the state variable
is only known to the transmitter and not to the receiving
terminals. A more general model involves a state variable that
can be decomposed intos = (st, sr, se, s0) where the sequence
s
n
t is revealed noncausally to the sender whereass

n
r and s

n
e

are revealed to the legitimate receiver and the eavesdropper
respectively whilesn0 is not revealed to any of the terminals. It
turns out that the model in section II-A includes this extended
model. The secret-key capacity for this new model is identical
to the secret-key capacity of a particular model in section II-A
defined by:ȳr = (yr, sr) and ȳe = (ye, se) and the channel
transition probability

p(ȳr, ȳe|st, x) =
∑

s0

p(yr, ye|s0, sr, se, st, x)p(s0, sr, se|st).

(5)
The equivalence can be established by noting that the modified
channel preserves the same knowledge of the side information
sequences as the original problem, the rate and equivocation
terms only depend on the joint distributionp(ȳnr , ȳ

n
e , x

n, snt )
and for any input distributionp(xn|snt ), the extended channel
satisfies

p(ȳnr , ȳ
n
e |xn, snt ) =

n
∏

i=1

p(ȳri, ȳei|xi, sti), (6)

where each term on the right hand side of (6) obeys (5).
We omit a detailed proof in interest of space and point

to the reader to [28, pp. 17—25] [29, Chapter 7, pp. 7-54]
for an analogous observation. Note that our model inherently
uses the asymmetry in channel state knowledge between
the eavesdropper and the legitimate receiver for secret key
generation. While as discussed in this subsection, it can be
easily extended to incorporate receiver side information,for
simplicity in exposition we will suppress the availabilityof
side information at the receivers.

III. M AIN RESULTS

We summarize the main results of this paper in this section.

A. Capacity Bounds

We first provide an achievable rate (lower bound) on the
secret-key capacity.

Theorem 1: An achievable secret-key rate is

R− = max
pu ,px|s,u

I(u; yr)− I(u; ye), (7)
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where the maximization is over all auxiliary random variables
u that satisfy the Markov conditionu → (x , s) → (yr, ye) and
furthermore satisfy the constraint that

I(u; yr)− I(u; s) ≥ 0. (8)

The intuition behind the coding scheme is as follows. Upon
observing sn, the sender communicates the best possible
reproductionun of the state sequence to the receiver Now
both the sender and the receiver observe a common sequence
un. The set of all codewordsun is binned into2nR

−

bins
and the bin-index is declared to be the secret key. Note
that the problem of communicating a state sequence with
common knowledge to the receiver is studied in [30], [31].
This setup requires that the reconstruction sequence satisfy a
certain distortion measure with respect to the state sequence. In
contrast the common reconstruction sequence in this problem
is an intermediate step used to generate a common secret key.

While we do not have a matching upper bound to Theorem 1
the following result provides an upper bound to the secret-key
capacity that is amenable to numerical evaluation.

Theorem 2: The secret-key capacity is upper bounded by
C ≤ R+, where

R+ = min
pyr,ye|x,s∈P

max
px|s

I(x , s; yr|ye), (9)

whereP denotes all the joint distributionsp⋆
yr,ye|x,s that have

the same marginal distribution as the original channel.
The intuition behind the upper bound is as follows. We

create a degraded channel by revealing the output of the
eavesdropper to the legitimate receiver. We further assumea
channel with two inputs(xn, sn) i.e., the state sequencesn

is not arbitrary, but rather a part of the input codeword with
distributionps . The secrecy capacity of the resulting wiretap
channel is then given byI(x , s; yr|ye).

Note that the problem of secret-key agreement is differ-
ent from the secret-message transmission problem considered
in [24]–[26]. This is because the secret-key can be an arbitrary
function of the state sequence (known only to the transmitter)
whereas the secret-message needs to be independent function
of the state sequence. For comparison, the best known lower
bound on the secret-message transmission problem is stated
below.

Proposition 1: [24]–[26] An achievable secret message
rate for the wiretap channel with noncausal transmiter channel
state information (CSI) is

R = max
pu ,px|u,s

I(u; yr)−max (I(u; s), I(u; ye)) . (10)

We note that the secret-key rate (7) is in general strictly better
than the secret-message rate (10).

B. Secret Keys from Dirty Paper Coding

We study the Gaussian case under an average power
constraint. The channel to the legitimate receiver and the
eavesdropper is expressed as:

yr = x + s + zr

ye = x + s + ze,
(11)

where zr ∼ N (0, 1) and ze ∼ N (0, 1 + ∆) denote the
additive white Gaussian nose and are assumed to be sampled
independently. The state parameters ∼ N (0, Q) is also
sampled i.i.d. at each time instance and is independent of both
zr andze. Furthermore, the channel input satisfies an average
power constraintE[x2] ≤ P . We assumesn to be non-causally
known to the sender but not to any other terminals.

Thus the parameterP denotes the signal-to-noise ratio, the
parameterQ denotes the interference-to-noise-ratio, whereas
∆ denotes the degradation level of the eavesdropper.

One possible application of the proposed model is secret-key
generation from multimedia signals. Consider a multimedia
transmission system, designed so that the legitimate user re-
ceives a better signal quality compared to the undesired users.
In addition suppose that it is determined that the legitimate
users are able to tolerate a small amount of additional per
letter distortionP . One can then carefully introduce this excess
distortion in order to generate a common secret-key between
the sender and the receiver. Just like the dirty paper channel
is an information theoretic model for digital watermaking
systems [22], our proposed is the corresponding information
theoretic model for the above mentioned application.

We now provide lower and upper bounds on the secret-key
capacity1. We limit our analysis to the case whenP ≥ 1.2

Proposition 2: Assuming thatP ≥ 1, a lower bound on the
secret-key agreement capacity is capacity is given by,

R− =
1

2
log

(

1 +
∆(P +Q+ 2ρ

√
PQ)

P +Q+ 1 +∆+ 2ρ
√
PQ

)

, (12)

where|ρ| < 1 and

P (1− ρ2) = 1− 1

P +Q+ 1
. (13)

Proposition 3: An upper bound on the secret-key capacity
is given by,

R+ =
1

2
log

(

1 +
∆(P +Q+ 2

√
PQ)

P +Q+ 1 +∆+ 2
√
PQ

)

(14)

It can be readily verified that the upper and lower bounds are
close in several interesting regimes. In Fig. 2 we numerically
plot these bounds and state some properties below. We omit
the proof due to space constraints.

Proposition 4: The upper and lower bounds on secret-
capacity satisfy the following

R+ −R− ≤ 1

2
bit/symbol (15)

lim
P→∞

R+ −R− = 0 (16)

lim
Q→∞

R+ −R− = 0 (17)

1Interestingly in the presence of public discussion, we havebeen able to
characterize the secret-key capacity [1].

2The constraintP ≥ 1 guarantees that (13) has a solution inρ. More
generally lower bound is also valid for all values ofP andQ for which (13)
has a solution inρ however the constraintP ≥ 1 suffices to obtain the
optimality results in Prop. 4.



4

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

SNR (dB)

R
at

e

 

 

Upper Bound
Lower Bound
Capacity with Public Discussion
Secret Message Lower Bound

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

∆ (dB)

R
at

e

 

 

Upper Bound
Capacity with Discussion
Lower Bound
Secret−Message Transmission

Fig. 2. Bounds on the capacity of the “secret-keys from dirtypaper” channel. In the left figure, we plot the bounds on capacity as a function of SNR (dB)
whenQ = 10 dB and∆ = 10 dB. The upper-most curve is the capacity with public-discussion [1] whereas the next two curves denote the upper and lower
bounds on the capacity as stated in Prop. 3 and Prop. 2. The dotted curve is the secret message transmission lower bound (10) evaluated for a jointly Gaussian
input distribution. In the right figure we vary the degradation level at the eavesdropper∆ (in dB) and compute the secret-key rates forP = 2 andQ = 2.
The upper-most curve is the secret-key capacity with publicdiscussion [1], the next two curves are the upper and the lower bounds, whereas the dotted curve
is the secret message transmission rate evaluated for Gaussian inputs.

C. Symmetric CSI

Consider the special case where the state sequences is also
revealed to the legitimate receiver. In this case we have a
complete characterization of the secret-key capacity.

Theorem 3: The secret-key capacity for the channel model
in section II-A when the state sequencesn is also revealed to
the decoder is given by

Csym = max
pu|s(·)px|u,s(·)

I(u; yr|s)− I(u; ye|s) +H(s|ye), (18)

where the maximization is over all auxilary random variables
u that obey the Markov chainu → (x , s) → (yr, ye).
Additionally it suffices to limit the cardinality of the auxiliary
variable to|S|(1 + |X |) in (18).

The achievability in (18) follows from (7) by augmenting
ȳr = (yr, s). Observe that (8) is redundant asI(u; yr, s) −
I(u; s) ≥ 0 holds. Furthermore the expression in (7) can be
simplified as follows

R− = max
pu ,px|s,u

I(u; yr, s)− I(u; ye)

= max
pu ,px|s,u

I(u; yr|s)− I(u; ye|s) + I(s; u|ye) (19)

= max
pu ,px|s,u

I(u; yr|s)− I(u; ye|s) +H(s|ye) (20)

where the last relation follows by noting that ifu is an optimal
choice in (19) then by selectingu⋆ = (u, s) will leave the
difference in the two mutual information terms unchanged
but increase the second termH(s|ye) as specified in (20).
Notice that (20) is identical to (18). The converse follows
by an application of Csiszar’s Lemma and is provided in
section VI-B

We provide another achievability scheme for Theorem 3
that only requires causal knowledge ofsn at the encoder. The
scheme is based on the following interpretation of (18). The
termI(u; yr|s)−I(u; ye|s) is the rate of a multiplexed wiretap
codebook constructed assuming that all the three terminals

have knowledge ofsn. The second termH(s|ye) is the rate of
the additional secret key that can be produced by exploiting
the fact thatsn is only known to the sender and the legitimate
terminal. This scheme is causal since the multiplexed code
uses only current state to decide which codebook to use.
Furthermore, since the state is known to the sender and
receiver, the second term is also causal.

We note that the capacity expression (18) captures an
interesting tension between two competing forces in choosing
the optimal distribution. To maximize the contribution of the
rate obtained from the multiplexed wiretap codebook, it is
desirable to selectu to be strongly correlated withs. However
doing so will leak more information abouts to the wiretapper
and reduce the rate contribution of the second codebook. To
maximize the contribution of the common state sequence, we
need to select an input that masks the state sequence from the
eavesdropper [32]. We illustrate this tradeoff via an example
in section III-D.

Finally it can be easily verified that the the expression (18)
simplifies in the following special case.

Corollary 1: Suppose that for eachs ∈ S the channel
pyr,ye|s=s,x(yr, ye|s, x) is such that the eavesdropper’s channel
is less noisy compared to the legitimate receiver’s channel.
Then the secret-key capacity withsn revealed to both the
legitimate terminals is

C = max
px|s

H(s|ye). (21)

Intuitively, when the wiretap channel cannot contribute tothe
secrecy, (21) states that transmitter should select an input that
masks the state from the output as much as possible.

D. Symmetric CSI: Numerical Example

It can be easily seen that for the dirty paper coding example
in section III-B, the secret-key capacity whens is also revealed
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to the legitimate receiver is infinity. More generally higher the
entropy ofs, higher will be the gains in the secret-key capacity
with symmetric CSI. In this section illustrate the secret-key
rate for an on-off channel for the receivers:

yr = srx + zr

ye = sex + ze,
(22)

where bothsr, se ∈ {0, 1}, the random variables are mutu-
ally independent andPr(sr = 0) = Pr(se = 0) = 0.5.
Furthermore we assume thatsr is revealed to the legitimate
terminals, whereas the eavesdropper is revealedỹe = (se, ye).
The noise random variables are mutually independent, zero
mean and unit variance Gaussian random variables and the
power constraint is thatE[x2] ≤ P .

We evaluate the secret-key rate expression for Gaussian
inputs i.e.,u = x ∼ N (0, P0) when sr = 0 and u = x ∼
N (0, P1) when sr = 1. Further to satisfy the average power
constraint we have thatP0 + P1 ≤ 2P . An achievable rate
from Theorem 3

R = I(x ; yr|sr)− I(x ; ỹe|sr) +H(sr|ỹe) (23)

= I(x ; yr|sr)− I(x ; ye, se|sr) +H(sr|se, ye) (24)

=
1

8
log(1 + P1) +

1

2
Eye [H(p(ye), 1− p(ye))] +

1

2
, (25)

where we have introduced

p(ye) =
Nye

(0, P0 + 1)

Nye
(0, P0 + 1) +Nye

(0, P1 + 1)
(26)

the aposterior distributionPr(sr = 0|ye) and the notation
Nye(0, σ

2) denotes the zero mean Gaussian distribution with
varianceσ2 evaluated atye and where (25) follows through a
straightforward computation.

In Fig. 3 we numerically evaluate this rate forSNR = 17
dB. For comparison we also plot the corresponding rate with
public discussion [2]

Rdisc =
1

8
log(1+2P1)+

1

2
Eye [H(p(ye), 1−p(ye))]+

1

2
. (27)

In Fig. 3 the solid curves show the secret key rate with
and without public discussion, while the dashed curve is
the entropyH(sr|se = 1, ye) and the dotted curve denotes
contribution of the wiretap code. Note that in general thereis a
tradeoff between these two terms. To maximize the conditional
entropy we setP0 = P1 = P/2, while to maximize the wiretap
codebook rate we need to setP0 = 0 and P1 = P . The
resulting secret-key rate is maximized by selecting a power
allocation that balances these two terms. The optimum fraction
of power transmitted in the statesr = 0 as a function of the
signal to noise ratio is shown in Fig. 4. Note that no power is
transmitted when the signal-to-noise ratio is below≈ −2.5dB.
In this regime the channels are sufficiently noisy so that
H(sr|ye, se = 1) ≈ 1 even withP0 = 0 and hence all the
available power is used for transmitting the secret-message. As
the signal-to-noise ratio increases more information regarding
sr gets leaked to the eavesdropper and to compensate for
this effect, a non-zero fraction of power is transmitted when
sr = 0.

IV. SECRET KEY GENERATION WITH NONCAUSAL

TRANSMITTER CSI

In this section we provide Proofs of Theorem 1 and 2 i.e.,
the coding scheme and the upper bound for the secret key
agreement problem.

A. Proof of Theorem 1

The coding theorem involves constructing a common se-
quenceun at the legitimate terminals and using it to generate
a secret key.

1) Codebook Generation: Assume that the input distribu-
tion is such thatI(u; yr) > I(u; s) as required in Theorem 1.
Let εn be a sequence of non-negative numbers that goes to
zero such that2εn < I(u; yr)− I(u; s).

• Generate a total ofT = 2n(I(u;yr)−2εn) sequences. Each
sequence is sampled i.i.d. from a distributionpu(·). Label
themun1 , . . . , u

n
T .
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codewords are generated i.i.d.pu(·) and partitions into2nR bins so that thare
are2nI(u;ye) sequences in each bin. Givensn, a jointly typical sequenceun

is selected and its bin index constitutes the secret key.

• Select a rateR = I(u; yr)− I(u; ye)− εn and randomly
partition the set sequences in the previous step into2nR

bins so that there are2n(I(u;ye)−εn) sequences in each
bin.

2) Encoding:
• Given a state sequencesn the encoder selects a sequence

un randomly from the list of all possible sequences that
are jointly typical withsn. Let the index of this sequence
beL.

• At time i = 1, 2, . . . , n the encoder transmits symbolxi
generated by sampling the distributionpx|u,s(·|ui, si).

3) Secret-key generation:
• The decoder upon observingyn

r finds a sequenceun

jointly typical with yn
r .

• Both encoder and the decoder declare the bin-index of
un to be the secret-key.

4) Error Probability Analysis: An error occurs only if one
of the following events occur:

E1 = {(un(l), sn) /∈ T n
ε (u, s) for all 1 ≤ l ≤ T } (28)

E2 = {(un(L), yn
r ) /∈ T n

ε (u, yr)} (29)

E3 = {(un(l), yn
r ) ∈ T n

ε (u, yr) for somel 6= L} (30)

Since the number of sequencesT > 2nI(u;s) it follows from
the Covering Lemma [29, Chapter 3] thatPr(E1) → 0 as
n → ∞. Furthermore letEc

1 = {(un, sn, xn) ∈ T n
ε′ (u, s, x)}

and Pr(Ec
1) → 1 as n → ∞ for any ε′ < ε. Since

p(yn
r |un(L), xn, sn) =

∏n
i=1 p(yri|ui, xi, si) it follows from

the conditional typicality Lemma [29, Chapter 2] thatPr(E2∩
Ec
1) → 0 as n → ∞. Finally since everyun(l) is generated

i.i.d. pu(ui) and is independent ofyn
r for l 6= L it follows

from the Packing Lemma [29, Chapter 3] thatPr(E3) → 0 if
T < 2nI(u;yr).

5) Secrecy Analysis: We need to show that for the proposed
encoder and decoder, the equivocation at the eavesdropper
satisfies

1

n
H(κ|yn

e ) = I(u; yr)− I(u; ye) + on(1), (31)

whereon(1) is a term that goes to zero asn → ∞.
Note that while the keyκ in general can be a function of

(sn,mx) as indicated in (1), in our coding scheme the secret
key is a deterministic function ofun and hence we have

1

n
H(κ|yn

e ) =
1

n
H(κ, un|yn

e )−
1

n
H(un|yn

e , κ)

=
1

n
H(un|yn

e )−
1

n
H(un|yn

e , κ)

=
1

n
H(un|yn

e )− εn

where the last step follows from the fact that there are
T0 = 2n(I(u;ye)−εn) sequences in each bin. Again applying
the packing lemma we can show that with high probability
the eavesdropper uniquely finds the codewordun(L) jointly
typical with yn

e in this set and hence Fano’s Inequality implies
that

1

n
H(un|yn

e , κ) ≤ εn.

It remains to show that
1

n
H(un|yn

e ) ≥ I(u; yr)− I(u; ye)− on(1).

Using the chain rule of the joint entropy we have

1

n
H(un|yn

e ) =
1

n
H(un) +

1

n
H(yn

e |un)−
1

n
H(yn

e ) (32)

=
1

n
H(un) +

1

n
H(yn

e |un, sn)−
1

n
H(yn

e ) +
1

n
I(sn; yn

e |un).
(33)

We now appropriately bound each term in (33). First note that
since the sequenceun is uniformly distributed among the set
of all possible codeword sequences, it follows that

1

n
H(un) =

1

n
log2 |C|

= I(u; yr)− 2εn (34)

Next, as verified below, the channel to the eavesdropper
(un, sn) → yn

e , is memoryless:

pyn
e |un,sn(y

n
e |un, sn)

=
∑

xn∈Xn

pyn
e |un,sn,xn(y

n
e |un, sn, xn)pxn|un,sn(x

n|un, sn)

=
∑

xn∈Xn

n
∏

i=1

pye|u,s,x(ye,i|ui, si, xi)px|u,s(xi|ui, si)

=

n
∏

i=1

∑

xi∈X
pye|u,s,x(ye,i|ui, si, xi)px|u,s(xi|ui, si)

=

n
∏

i=1

pye|u,s(ye,i|ui, si)

The second step above follows from the fact that the channel
is memoryless and the symbolxi at time i is generated as a
function of (ui, si). Hence we have that

1

n
H(yn

e |sn, un) =
n
∑

i=1

H(ye,i|si, ui). (35)

Furthermore note that

1

n
H(yn

e ) ≤
n
∑

i=1

H(yei). (36)
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Finally, in order to lower bound the termI(sn; yn
e |un) we

let J to be a random variable which equals 1 if(sn, un) are
jointly typical. Note thatPr(J = 1) = 1− on(1).

1

n
I(sn; yn

e |un) =
1

n
H(sn|un)− 1

n
H(sn|un, yn

e )

≥ 1

n
H(sn|un, J = 1)Pr(J = 1)− 1

n
H(sn|un, yn

e )

=
1

n
H(sn|un, J = 1)− 1

n
H(sn|un, yn

e )− on(1)

≥ H(s|u) − 1

n
H(sn|un, yn

e )− on(1) (37)

≥ H(s|u) − 1

n

n
∑

i=1

H(si|ui, ye,i)− on(1) (38)

where (37) follows from the fact thatsn is an i.i.d. sequence
and hence conditioned on the fact that(sn, un) is a pair of
typical sequence there are2nH(s|u)−non(1) possible sequences
sn.

Substituting (34), (35), (36) and (38) in the lower bound (33)
and using the fact that asn → ∞, the summation converges
to the mean values,

1

n
H(κ|yn

e )

= I(u; yr) +H(ye|u, s) −H(ye) +H(s|u)−H(s|u, ye)−on(1)

= I(u; yr)− I(ye; s|u)− I(ye; u) + I(ye; s|u) − on(1)

= I(u; yr)− I(ye; u)− on(1)

as required.

B. Proof of Theorem 2

A sequence of length-n code satisfies:

1

n
H(κ|yn

r ) ≤ εn (39)

1

n
H(κ|yn

e ) ≥
1

n
H(κ)− εn (40)

where (39) follows from the Fano’s inequality since the
receiver is able to recover the secret-keyκ given yn

r and (40)
is a consequence of the secrecy constraint. Furthermore, note
thatκ → (xn, sn) → (yn

r , y
n
e ) holds as the encoder generates

the secret keyκ. Thus we can bound the rateR = 1
n
H(κ) as

below:

nR ≤ I(κ; yn
r |yn

e ) + 2nεn

≤ I(κ, sn, xn; yn
r |yn

e ) + 2nεn

≤ I(sn, xn; yn
r |yn

e ) +H(κ|sn, xn) + 2nεn

= I(sn, xn; yn
r |yn

e ) + 3nεn (41)

≤
n
∑

i=1

I(si, xi; yr,i|ye,i) + 3nεn (42)

≤ nI(x , s; yr|ye) + 3nεn (43)

where (41) follows from the Fano Inequality becauseκ can
be obtained from(xn, sn), (42) from from the fact that the
channel is memoryless and the last step follows from the
concavity of the conditional entropy termI(x , s; yr|ye) in the
input distributionpx,s (see e.g., [33]).

p1

s

xp
 

Transmitted Point

Received Point

Uncertainty sphere 

at eavesdropper

xd

x

PQQP  2  

Fig. 6. Secret-key agreement codebook for the dirty paper channel. The
transmit sequencexn is selected so thatun = x

n + s
n is a sequence in the

codebookC. The smaller spheres above denote the noise uncertainty at the le-
gitimate receiver. Their centres are the codewords inC. Our binning of smaller
spheres guarantees that the noise uncertainty sphere of theeavesdropper has
all possible messages, resulting in (asymptotically) perfect equivocation.

Finally since the secret-key capacity only depends on the
marginal distribution of the channel and not on the joint
distribution we can minimize over all joint distributions with
fixed marginal distributions.

V. GAUSSIAN CASE

We develop the lower and upper bounds on secret-key
agreement capacity for the Gaussian channel model.

A. Proof of Prop. 2

Recall thats ∼ N (0, Q). Choosex ∼ N (0, P ) to be a
Gaussian random variable independent ofs and letE[xs] =
ρ
√
PQ. Selectu = x + αs and the lower bound follows by

evaluating

R = I(u; yr)− I(u; ye)

= h(u|ye)− h(u|yr)
Further evaluating each of the terms above withu = x + αs,
note that

h(u|ye) = h(x + αs|x + s + ze) =

1

2
log 2πe

(

P + α2Q+ 2αρ
√

PQ −
(P + αQ+ (1 + α)ρ

√
PQ)2

P +Q+ 1 +∆+ 2ρ
√
PQ

)

and

h(u|yr) = h(x + αs|x + s + zr) =

1

2
log 2πe

(

P + α2Q+ 2αρ
√

PQ −
(P + αQ+ ρ(1 + α)

√
PQ)2

P +Q+ 1 + 2
√
PQ

)

.
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This yields that

R =
1

2
log



1 +
∆

1 + PQ(α−1)2(1−ρ2)

P+α2Q+2ρα
√
PQ





+
1

2
log

(

P +Q+ 1 + 2ρ
√
PQ

P +Q+ 1 +∆+ 2ρ
√
PQ

)

. (44)

Note that the first term in the expression above is maximized
whenα = 1. In this case we have that

R =
1

2
log

(

(1 + ∆)(P +Q+ 1 + 2ρ
√
PQ)

P +Q+ 1 +∆+ 2ρ
√
PQ

)

(45)

=
1

2
log

(

1 +
∆(P +Q+ 2ρ

√
PQ)

P +Q+ 1 +∆+ 2ρ
√
PQ

)

(46)

as required.
To complete the proof we show that the choiceα = 1 is

indeed feasible whenP ≥ 1 and (P, ρ) satisfy (13).
In particular the constraint (8) requires that

h(u|s) ≥ h(u|yr)
⇒ h(x |s) ≥ h(x + s|x + s + zr)

⇒ 1

2
logP (1− ρ2) ≥ 1

2
log

(

P +Q+ 2ρ
√
PQ)

P +Q+ 1 + 2ρ
√
PQ

)

.

Rearranging,

P (1 − ρ2) ≥ 1− 1

P +Q+ 1 + 2ρ
√
PQ

≥ 1− 1

P +Q+ 1
(47)

as required.
It is worth comparing the choice of the auxiliary variable

u = x + s in the present problem with the choice of optimal
u in the dirty paper coding problem [34]. While the inputx

is independent ofs in [34], as illustrated in Fig. 6 the optimal
x in the secret-key problem has a component alongs. This is
because scaling the interference sequence increases the secret-
key rate. Secondly recall that in [34] we find the auxiliary
codewordun that is closest toαsn where α = P

P+N
. In

contrast this MMSE scaling is not performed in the secret-
key problem.

B. Proof of Prop. 3

We evaluate the upper bound in Theorem 2 for the choice
ze = zr + zδ, wherezδ ∼ N (0,∆) is independent ofzr.

I(s, x ; yr|ye) = h(yr|ye)− h(yr|ye, x , s)
= h(yr|ye)− h(zr|ze)

≤ 1

2
log

(

P +Q + 1 + 2
√

PQ− (P +Q+ 1 + 2
√
PQ)2

P +Q+ 1 +∆+ 2
√
PQ

)

−

− 1

2
log

(

1− 1

1 + ∆

)

where we have used the fact that the conditional entropy
h(yr|ye) is maximized by a Gaussian distribution [35]. The
above expression gives (14).

VI. SYMMETRIC CSI

We establish the secret-key capacity for the case of sym-
metric channel state information i.e., whensn is revealed to
both the transmitter and the legitimate receiver.

A. Achievability for Theorem 3

As explained in section III-C the achievability result follows
directly from Theorem 1 by replacingyr with ȳr = (yr, s)
in the lower bound expression. We nevertheless provide an
alternate scheme that only requires the knowledge of causal
CSI at the transmitter. The idea is to use a different wiretap
codebook for each realization of the state variable. In particular
suppose thatS = {s1, . . . , sM} denote the set of available
states. Since the encoder and the decoder are both aware of
the state realizationsi and can use this common knowledge
to select the appropriate codebook for transmission. These
codebooks are constructed assuming that the eavesdropper is
also revealed the state. Suppose that we fix the distribution
pu,x|s=si

(·) in (18). Let

Ri = I(u; yr|s = si)− I(u; ye|s = si) (48)

and pi = Pr(s = si). For eachi = 1, 2 . . . ,M , a wiretap
codebook of lengthnpi and rateRi is constructed and used
to transmit a messageκi. Another independent keyκs of rate
Rs = H(s|ye) is then generated by exploiting the fact thatsn

is not known to the eavesdropper.
1) Codebook Construction:

• For eachi = 1, . . . ,M generate a codebookCi of rate
Ri − 2εn and lengthni = n(pi − εn) by sampling the
codewords i.i.d. from the distributionpu|s(·|si).

• Construct a codebookCs where the set of all typical
sequencessn of size 2n(H(s)−2εn) is partitioned into
2n(Rs−εn) bins each containing2n(I(s;ye)−εn) sequences.

2) Encoding:

• For eachi = 1, . . . ,M the transmitter selects a random
messageκi and a random codeword sequencetni

i in the
corresponding in the corresponding bin ofCi.

• Upon observings(j) = si at time t = j, it selects the
next available symbol oftni

i and samples the channel
input symbol from the distributionpx|s,u .

• At the end of the transmission it looks for the bin index
of sn in Cs and declares this to beκs.

• The overall secret-key is(κ1, . . . , κM , κs).

3) Decoding:

• The decoder divides yn
r into subsequences

(yn1
1 , . . . , ynM

M ), where the subsequencesyni

i is
obtained by collecting the symbols ofyn

r when s = si.
• For i = 1, . . . ,M it searches for a codewordtni

i in Ci
that is jointly typical with yni

i . If no such codeword
or multiple codewords is found an error is declared.
Otherwise the bin index oftni

i is taken as declared as
the messagêκi.

Through standard arguments it can be shown that the error
probability in decoding at the legitimate receiver vanishes as
n → ∞ provided we select the rates according to (48). We
omit the details due to space constraints.
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4) Secrecy Analysis: First, consider splitting yn
e =

(yn1
e1 , . . . , y

nM

eM ) where the subsequenceynj

ej is obtained by
grouping the symbols ofyn

e when s = sj . From the con-
struction of the wiretap codebookCj it follows that

1

n
H(κj |ynj

ej ) ≥
1

n
H(κj)− εn, j = 1, . . . ,M (49)

Next since the messages are selected independently and the
encoding functions are also independent it follows that

1

n
H(κj |κ1, . . . , κj−1, κj+1, . . . , κM , yn

e , s
n)

=
1

n
H(κj|yn

ej) ≥
1

n
H(κj)− εn (50)

Thus by the chain rule we have that

1

n
H(κ1, . . . , κM |yn

e , s
n) ≥ R0 − εn (51)

whereR0 = H(κ1, . . . , κM ) = I(u; yr|s) − I(u; ye|s). To
complete the secrecy analysis we require the following addi-
tional result

Lemma 1: For any input distributionpu,x|s such that
I(u; yr|s) > I(u; ye|s) we have that

1

n
H(sn|yn

e ) ≥
1

n
H(s|ye)− on(1). (52)

Proof: First observe that we can write:

1

n
H(sn|yn

e ) =
1

n
H(yn

e |sn) +
1

n
H(sn)− 1

n
H(yn

e ) (53)

=
1

n
H(yn

e |sn, un) +
1

n
I(un; yn

e |sn) +
1

n
H(sn)− 1

n
H(yn

e ).

(54)

We now observe the following. Since the channel from
(un, sn) → yn

e is memoryless,

1

n
H(yn

e |sn, un) =
1

n

n
∑

i=1

H(yei|si, ui) → H(ye|s, u) (55)

asn → ∞. Next note that by construction

1

n
H(un|sn) = I(u; yr|s)− 2εn, (56)

and sinceI(u; yr|s) > I(u; ye|s) it follows through standard
calculations that3

1

n
H(un|sn, yn

e ) ≤ I(u; yr|s)− I(u; ye|s)− on(1) (57)

Combining the above two inequalities,

1

n
I(un; yn

e |sn) ≥ I(u; ye|s)− on(1) (58)

Since the sequencesn is sample i.i.d. we have

1

n
H(sn) = H(s) (59)

3Intuitively for any typical sn, the total number of sequencesun is
2nI(u;yr|s). The probability that a sequenceun is jointly typical with y

n
e

is 2−nI(u;ye|s). A precise argument involves bounding the expected size of
the list and invoking a concentration result. See c.f. [36, Lemma 1] for an
analogous calculation.

and finally from the chain rule

1

n
H(yn

e ) ≤
1

n
H(yei) → H(ye) (60)

as n → ∞. Substituting (55), (58), (59) and (60) into (54)
completes the claim.
The secrecy analysis can be completed by combining (51)
and (52) as shown below.

1

n
H(κM

1 , κs|yn
e ) =

1

n
H(κM

1 |κs, y
n
e ) +

1

n
H(κs|yn

e ) (61)

≥ 1

n
H(κM

1 |sn, yn
e ) +

1

n
H(κs|yn

e ) (62)

≥ I(u; yr|s)− I(u; ye|s) +
1

n
H(κs|yn

e )− on(1) (63)

≥I(u; yr|s)−I(u; ye|s)+
1

n
H(sn|yn

e )−
1

n
H(sn|yn

e , κs)−on(1)

(64)

≥ I(u; yr|s)− I(u; ye|s) +H(s|ye)−
1

n
H(sn|yn

e , κs)− on(1)

(65)

= I(u; yr|s)− I(u; ye|s) +H(s|ye)− on(1) (66)

where (62) and (64) follow from the fact thatκs is a deter-
ministic function ofsn while (63) follows by substituting (51)
and (65) follows by substituting (52) while (66) follows from
the fact that1

n
H(sn|yn

e , κs) → 0 asn → ∞, since from the
construction ofCs there are at-most2n(I(s;ye)−εn) sequences
associated with any given bin. Hence the decoder can decode
sn with high probability and hence Fano’s inequality applies.

B. Converse

For any sequence of codes indexed by the codeword length
n, we show that the secret key rate is upper bounded by the
capacity expression (18) plus a term that vanishes to zero as
the block length goes to zero. By applying the Fano inequality
on the secret-key rate, we have that for some sequenceεn that
approaches zero asn goes to infinity that

nR ≤ I(κ; l) + nεn ≤ I(κ; sn, yn
r ) + nεn (67)

where the last step follows from the data processing inequality
sincel = hn(s

n, yn
r ). Furthermore from the secrecy condition

I(κ; yn
e ) ≤ nεn and hence,

nR ≤ I(κ; sn, yn
r )− I(κ; yn

e ) + 2nεn (68)

≤
n
∑

i=1

I(κ; yri, si|y i−1
e yn

r,i+1, s
n
i+1)− I(κ; ye,i|y i−1

e yn
r,i+1, s

n
i+1),

(69)

where the second step follows from the Csiszar sum-
identity [29, Chapter 2] applied to difference of mutual infor-
mations. The derivation is analogous to [37] and is omitted.
If we let vi = (y i−1

e yn
r,i+1, s

n
i+1) and ui = (κ, vi) note that

vi → ui → (xi, si) → (yr,i, ye,i) holds. Maximizing over each
term in the summation we obtain that

R ≤ max
pu,v,x

I(u; yr, s|v)− I(u; ye|v) + 2εn (70)

= max
pu,x

I(u; yr, s)− I(u; ye) + 2εn (71)
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where the second step follows from the fact that the max-
imizing over v is redundant since (70) involves a convex
combination of I(u; yr, s|v = vi) − I(u; ye|v = vi) and
hence we can replace with the term that results in the largest
value. We recover (18) from (71) by using an approach similar
to (20).

VII. C ONCLUSIONS

We study the secret key agreement capacity over a wiretap
channel controlled by a state parameter. Lower and upper
bounds on the capacity are established when the state sequence
is known noncausally to the encoder. The lower bound is
obtained by creating a common reconstruction sequence at
the legitimate terminals and binning the set of reconstruction
sequences to generate a secret key. When evaluated for the
Gaussian case (secret-key from dirty paper) our bounds co-
incide in the high SNR and high INR regimes and the gap
between the two bounds is always less than 0.5 bits. We
also observe that the rates for secret-key agreement can be
significantly higher than that proposed for the secret message
transmission problem. We also extend our earlier [2] results
on symmetric CSI to the general case of asymmetric CSI.

A complete characterization of the secret-key capacity is
obtained for the case of symmetric channel state information
i.e., when the state sequence is known to both the encoder
and the decoder. In this case we also present another coding
scheme that involves multiplexed wiretap codebooks and only
requires causal knowledge of the state sequence at the encoder.
The capacity expression also captures an interesting tradeoff
between correlating the input with the state sequence to maxi-
mize the contribution of the wiretap codebook and masking the
state sequence from the eavesdropper, which was illustrated by
a numerical example. Finally the reader is referred to [1], [2]
for some results on public discussion.
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