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Abstract— We study secret-key agreement with public vealed the respective receivers. Since the channel gains
discussion over a flat-fading wiretap channel model. The can be viewed as additional outputs at the receiver [11],
fading gains are correlated across the receivers and sam- the model essentially reduces to a continuous valued

pled independently at each time. Perfect receiver channel . .
state information (CS) is assumed, whereas a noisy cs| @1d cost constrained extension of the CW model [8],

of the main channel is also available to the transmitter. [9]. The secret-key capacity is characterized in an
We propose lower and upper bounds on the capacity. Our analogous manner and Gaussian inputs are shown to

lower bound is achieved by a coding scheme that involves pe optimal. Reference [12] studies a non-coherent i.i.d.
a separate binning of the receiver CSI sequence and its Rayleigh fading CW model and establishes that (i) the

channel output sequence. In general it improves upon . e R .
the joint-binning schemes considered in earlier works. capacity achieving distribution is discrete and (ii) the

Our upper and lower bounds coincide, establishing the Secret-key capacity remains bounded in the signal-to-
capacity, when either the transmitter has no CSI or noise ratio (SNR) regardless of the number of antennas
when the channel gains of the legitimate receiver and gt each terminal.
the eavesdropper are statistically independent. While the capacity results in [10], [12] provide
useful fundamental limits, they crucially depend on
the fading channel gains of the receiver and the eaves-
In recent years there has been a significant interestdropper being independent. When this condition does
developing secret-key agreement protocols over fadimgt hold, the proposed coding schemes may not be
channels, see e.g., [1]-[7] and the references thereiptimal. In realistic scattering environments, correla-
In time-division duplex (TDD) wireless systems, &ion between the channel gains could be observed, see
natural reciprocity between uplink and downlink existss.g., [13], [14]. As such the correlation depends on
which is clearly a valuable resource for generating @ number of factors such as the altitude of the base-
shared secret key. In frequency division duplex (FDDgtation, the number of scatteres and the position of the
systems, such a reciprocity does not exist, pulilic receivers. Secondly the results assume that no channel
interaction between the remote terminals can still batate information (CSI) is available at the transmitter
used to generate a shared secret-key that remaimsl are applicable only to FDD systems. In TDD
concealed from an eavesdropper. systems, the transmitter may have access to a noisy
While a significant body of literature exists for pracversion of of the legitimate receiver's channel state
tical protocol designs for secret-key generation, suinformation (CSl), which again is not considered in
prisingly little attention has been devoted towards urearlier works.
derstanding information theoretic limits. The pioneer- In this paper, we first study correlated fading chan-
ing works in [8], [9] introduce a channel-wiretappemnels with receiver only CSI and establish the secret-key
model (CW) where the sender and receiver commuaapacity using a two stage scheme where the receiver
nicate over a wiretap channel. A public discussiochannel gains are first revealed to the transmitter
channel (of unlimited capacity) is also available foover the discussion channel. The secret-key generation
communication. A characterization of the secret-kegodebook is then used conditioned on this knowledge
capacity of the CW model remains open. However @t all the terminals. We observe that the capacity
has been solved for the practically important case athieving technique in [10], [12] that involves joint
independent noise channels. When the output symboldinning of the receiver output and channel gains is
at the receiver y) and eavesdroppers.) are con- sub-optimal. We then extend these results to the case
ditionally independent given the input symbgli.e., when the transmitter also has access to a noisy CSI of
Yo ¢ X > Y. holds thenC' = max,,) I(x;y:|y.). the legitimate receiver. We propose a natural extension
Building upon these results, reference [10] establishe$ our two-step coding scheme, an upper bound on
the secret-key capacity for a class of fading channethe secret-key capacity, as well as the capacity when
The fading coefficients are sampled i.i.d. both in timéhe channel gains of the receiver and eavesdropper are
and across the receivers and the channel gains areinglependent.

I. INTRODUCTION



II. CHANNEL MODEL

The channel model is an i.i.d. fading channel mod:
described by

Ye(t) = he(t)x(t) + z(t)
Ye(t) = he(t)x(t) + ze(t)’

where the noise random variablest) and z.(t) are
mutually independent and sampled fr@éi/(0,1) in-
dependently for each The fading gaingh, (t), he(t))
are sampled from a joint distributiopy, s, (2, he),
independently for eacht. The input symbols are _ _ o o
complex-valued and satisfy an average power coﬁﬁmﬁg sihcgg‘g?gf‘f’grosf,\fgpjcl'tgjgh;fﬂ‘g“g §°heme (2) anotjoi
straint L 3% | E[|x(¢)[?] < P. The realizations of '

h.(t) and h.(t) are revealed to the legitimate receiver

and the eavesdropper. For our numerical results W pe interpreted as the penalty arising from the
consider the case of Gaussian fading whéreand ¢5yesdropper CSI being correlated with the receiver
he are each zero mean, unit variance, jointly Gaussigfs| The joint-binning scheme loses secret-key bits
random variables with a correlation coefficient@f a5 the eavesdropper can learn more information about
In addition, we assume that the transmitter is '€ which is jointly binned withh”. In contrast our
T’ T "

vealed an i.i.d. sequendg(t), which is a noisy version proposed scheme only bing and reveals” and thus

of h.(t). The transmitter staté; satisfies the Markov 4/sids this leakage.

chain b, — (x, h) — (yr, ¥e, he) indicating that the  fig 1 provides a numerical comparison between the
channel outputs at the receiver and eavesdropper @ity and the joint-binning scheme as a function of
independent of given(x, h,). In the case ofGauSS|anthe correlation parameter,. We assume SNR = 10

channels we let(t) = pih(t) + w(t) wherew(t) 4 andp, — 0. We see that even a small amount of
is zero mean Gaussian random variable with varianggrejation can result in a significant penalty in the

1 — p? and independent of everything else.

=1,2,....n (1)
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joint-binning scheme.

lIl. MAIN RESULTS When the transmitter has access to a side-
information sequench; we have the following results.
Proposition 2: An achievable secret-key rate for the
ding-wiretap channel with transmitter CSl is

Our main results are as follows.
Theorem 1: For the case of receiver-only CSI i.e.ﬁca
when h; = 0 the secret-key capacity is given by

P |* R = {1 hes el he) — :
C=E log (14— 2 = max ¢ I(x, hy; ye|he) = I(ye, he; yi| )
hy,he |:Og( + 1+P|hc|2):| (2) Dx|hg

The capacity achieving scheme involves a two-step + max{I(he; he) = I(hs; ye, he), 0} } ©
process. First the receiver reveals to all the termi-
nals using the public discussion channel. Thereafter aThe secret-key rate is achieved by a natural exten-
conditional secret-key generation codebook is used $in of the capacity achieving scheme with receiver-
achieve a rate of only CSI. In the first step the legitimate receiver bins
the sequencé so that a secret key of rat8; =
C= Iﬁ%{{l(xmlhr) L0 ye, helhe)} )y {I(hy; he) — I(hy; ye, he),0} can be achieved. In
the second phase the sequenfeis binned using a
conditional secret-key generation codebook so that a
It is interesting to compare the proposed codint€ of Ry = I(x, he; yi|h) — I(Ye, he; yz|h:) can be
scheme with the joint-binning scheme [10]. achieved. The total secret-key ratefis = R, + Ro.
Proposition 1: An achievable rate using the joint- | contrast, the joint-binning scheme yields a lower
binning scheme in [10] for the Gaussian fading channEte as stated below:

with receiver-only CSI and a Gaussian input distribu- Proposition 3: An achievable secret-key rate for the
tion x ~ CN(0, P) is: fading wiretap channel with transmitter CSI using the

joint-binning scheme is:

= Hl(ag([(x;yrblcv hr7 hC) (4)
p(x

Plh.|* 2
Ry = Ehr,hc 10g 1+ HTW + log(l — pe)
‘ (5) RJ_B Zmax{l(x, ht;}/r|hr) _I(}/eahe;}/rlhr)
Px|hy,
if Ry > 0. The rate is zero otherwise. + I(hes ) — I(he: ye, b )} %
We note that the loss in (5) with respect to the v r e te
capacity expression (2) is theg(1 — p?) term. This



The joint-binning scheme provides an advantage tog",...,x5") where x}” denotes the subsequence
the eavesdropper if its state sequergeis strongly of x™ corresponding to the indices whebg; = h;.
correlated withh?*. This is manifested in the fact thatLikewise the receiver partitiong” into subsequences
the second terni(hy; he) —I(hy; ye, he) in (7) becomes (y,%,...,y,5). The receiver applies an independent
negative. The strategy in Prop. 2 discussed earlisecret-key generation codebook [8], [9] on each of the
alleviates this problem by separately binnihfy and subsequence;s:fjjl of rate:
Y
We next state an upper bound on the secret-key ratef2; = 1(x; ys|he = hj) — I(ye, he; y|he = hj) (11)
Proposition 4: An upper bound on the secret-key
rate for the fading wiretap channel with public discus2Nd generates a key;. The overall key k =

sion is (ki,....kp) has aratek = 3 p;R; which equals
. the expression in (3).
R™ = max I(x, be; v, helye, he) (8)  To establish the rate in (4) we observe that because

the noise variables, andz., are independent we have

The above upper bound equals the secret-key capaqméty & (x, hy) © (ye, he) and hence
if the channel also satisfie§y,, h,) — (x,h) — ' o e
(yeahe)- k h h IO ) ( ) ( ) C:I(X;yr“’r)_I(Yeahe;yr“’r) (12)

We remark that wheny,, h,) — (x, hy) = (Ye, he . ) B )
holds, the capacity can be achieved using only a joint- = L(e, e, ; yelhe) = I(¥e, hes il ) (13)
binning scheme, even though it is in general sub- = 1(x; yi| v, Ve, he). (14)
optimal (c.f. Prop. 2).

Theorem 2: When the channel gains. and h, are Furthermore it follows from [9, Theorem 2] that an

independent, the secret-key capacity for the Gaussi grer bound on the secret-key capacity with outputs

fading wiretap channel is lower and upper bounded by*’ hr) and (ye, he) at the -Iegmmate terminals and
- < C < Ot where avesdropper respectively is

P(hy)|h]? )] CF = maxI(x; s, hulye, he) = maxI(x; yelye, he, ho),

C™ =max Ep_p, h [log <1 +—
14 P(he)|he|? (15)

P(he)
1 b 9
+ log 1—p? ©) where we use the fact that is independent ofy., x)

where the maximum is over all power allocation po"_givenhe in the second step. This upper bound coincides

. : with (4).
cies P(h) that satisfyE[P(h)] < P and wheré To establish Theorem 1 it only remains to show
N |hf he|? 1 that the expression in (4) is maximized by a Gaussian
C" = Ep, [103 (1 + NE )] +log 1- 2 input i.e.,x ~ CN(0, P). Let p.(-) be any distribution
¢ '10) with E[x?] = P < P. For each fixed(h,, h.), the
estimation error ofy. giveny, is
2 2 2
I_V' PROOF OFMAIN RES%JLTS o 02, =1+ | P - PElhe|?|hel (16)
We provide a proof of the main results in this Trlye 14 Pilhe|?
section. In the analysis of our coding schemes we - Py|h,|?
assume that the fading gairts and h, are discrete =1+ T PR 17)

valued and belong to a s€t, ho,...,Ap}. We let

p; = Pr(h, = hj). The result can be extended tolhus we have

continuous valued channel gains using quantization

arguments. We omit the details in this paper, but refélY:|hr; Ye: he) = En, n [P(y:lye, he = hr, he = he)]

the reader to [10], [15] for a similar analysis. (18)
2
A. Proqf of Theorgﬂ 1 o | < B {log oo <1 il ﬂ
We first establish that the rate expression in (3) is

1 + Pl |he|2
achievable. In our proposed coding scheme, the sender (19
samples an i.i.d. sequencé’ from the distribution <E log 2 1 P|h)?
px(-) and sends it oven channel uses. The receiver = Bhehe logme | 1+ 1+ Plho?
observeqy;*, h*) whereas the eavesdropper observes (20
(y, h). At the end of the source transmission the re-
ceiver transmit$” over the public discussion channe|Where (19) follows from (17) and the fact that a
At this point all the terminals have accessH®. The Gaussian input distribution maximizes the differential

sender partitions the sequeng@ into subsequencesentmpy among all distributions with a fixed variance
and the last step follows from the fact that the objective

1We useh! to denote the conjugate df;. function is increasing i, and so we maximize it by



setting P, = P. Thus we have

I(X§}/r|hr7y‘sa he) = h()/r|he7 hra}’e) - h(}/rl}/ea h, heaX)

(21)
= h(yr|h07 hraYC) - h(zr) (22)
= h(yi|he, by, Yo) — log 2me (23)

P|h|?

B
(24

where the last step follows from (20). Since equality
holds by selecting a Gaussian input distribution, this «
complete the proof of Theorem 1.

B. Proof of Prop. 1

The joint-binning scheme proposed in [8], [9] in-
volves joint binning of(y*, A7) such that the transmit-
ter can reproduce these sequences with high probability
given x™. The rate that can be achieved is, .

< Ehr7he |:10g (1 +

Ryp = 1(x; Yo, he) — I(Ye, he; yr, hr) (25)

= I(X;yr|hr) - I(yea he;}/rlhr) + I(X; hr) - I(Yea he; hr)
(26)

= I(x; yr|he) = I(Ye, he; ye|he) — I(he; he) (27)

where the last relation follows from the fact that
(x, h,) are independent ang, — h. — h, holds.
Evaluating (27) withx ~ CN(0, P) we have that

I(X;}/r|hr) - I()/ea he;}/r|hr)

= h(yx|hry Ve, he) — h(yi| by, X) (28)
P|h,|?

=F 1 14+ ——— 29

fiohe |:Og< 1 P|he|2)] (29)

and using the jointly Gaussian fading model we have
I(hy he) = —log(1 — p?). (30)

This establishes (5).

C. Proof of Prof. 2

If the expression in (31) is zero, no secret-key is
produced in this step.

With the common knowledge oh between
the transmitter and receiver, the sequences
x", h¢ and y* are partitioned into D
sub-sequences. The sender partitions the
sequences (x™,h’) into D subsequences
(O Y O B, (i )}

where (x;”, h;) corresponds to those indices
i € [1,n] whereh, ; = h;. Likewise the receiver
partitionsy, into (y,'1,...,y,'p)-

A separate secret-key genefation codebook in [8]
is then applied to each the subsequences and a
key k; of rate

Rj = I(X7 ht;)/r|hr = .7) - I(yea he;)/r|hr = .7)
(32)
is produced.
The overall secret-key is obtained by concatenat-
ing each of theD + 1 keys in the above steps.
The secret-key has a rate

D
R=Ry+» Pr(h =j)R;,

Jj=1

(33)

which reduces to (6).

D. Proof of Prop. 3

A straightforward extension of the joint-binning
scheme gives

RiB ZI(X, ht;}/rahr) _I(yeahe;)/rahr) (34)
= I(X, ht;)/r|hr) - I(Ym hc;)/r|hr)
+ I(x, he; hye) = I(Ye, he; hy) (35)
= I(X, ht;}/r|hr) - I(Yea he;}/rlhr)
+I(ht;hr) _I(}/eahe§hr) (36)

where the last step follows from the Markov condition

X <> hy < h;.

The coding scheme is an extension of the scherme
in the proof of Theorem 1. In particular we propose
layered coding scheme as follows:

o The sender samplex; from the distribution

&, Proof of Prop. 4

In [16, Theorem 4], it is shown that an upper

D (zilhes) for i = 1,2,...,n and transmits it bound on secret-key agreement capacity for the wiretap
at timet = i. The receiver and eavesdropper arghannelp,, . . «(-) with non-causal transmitter CSI

revealed(y,;, h.;) and(y.., h.;) respectively.

« Upon receiving (h?,y*), the receiver applies
a Slepian-Wolf code [8], [9] of rateR,(, =
H(h:|h) to A7 and transmits the correspondinq:
bin index over the public discussion channel. B
virtue of the Slepian-Wolf coding theorem the

h{ is given by

C < maxI(x,h;y|ve)

Pa|hy

(37)

ollowing the discussion in [11], [17], the channel
¥vith two-sided CSI is equivalent to a channel with

transmitter is able to recover sequenige with ~Tansmitter only CSI but with outputgh,, ;) and

high probability upon observing? and the bin (he, Ye) at the legitimate receiver and the eavesdropper

index. respgcuvely. Hence the aboye upper bound can also be
« The sender and receiver apply a secret-key agréiPlied to the case of two-sided CSI:

ment codebook [8], [9] tdh* to generate a secret

key of rate

RO = max (0, I(hr; ht) - I(hr; heaye))

C < max I(x, h; vy, helye, he)

Px|hy,

(38)

(31) thus establishing (8).



When the Markov conditiorih,, y;) < (x,h;) < The first term in (48) can be upper bounded as follows

Ye, he) is satisfied, we have
( ) I(th; Yr|}/c, he, hr) = h(yrb/m he, hr) - h(zr) (50)

I h ) Iy hI‘ e he r
(X’ 0y |y ) S h ()/r - —3)@ Ye, hea hr) - h(zr) (51)
:I(}/eaheaxa ht;}/rahr) _I(}/eahe;}/rahr) (39) |hc|
2
:I(X, ht;)/rahr)_[()/c,hc;)/rvhr) (40) < F |:10g <1+P|f|’1]:hr4| >:| (52)
> he

which equals (34). Thus the capacity can be achieved

by a joint-binning scheme in this special case. Note that the upper bound expression in (10) follows

by substituting (49) and (52) into (48).
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