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Abstract

We study low-delay error correction codes in a real-time streaming setup. The encoder observes a stream of source packets and
outputs the channel packets in a causal fashion, which are broadcast to two receivers over burst-erasure channels. Each receiver
must decode the source packets sequentially with a deadline of Ti, while its channel can introduce an erasure burst of maximum
length Bi, where i ∈ {1, 2} and w.l.o.g. B2 > B1. We study the associated capacity as a function of the burst lengths and
decoding deadlines.

We observe that the operation of the system can be divided into two main regimes. The so-called large-delay regime corresponds
to the case when either T1 ≥ B2 or T2 ≥ B1 + B2. We show that for these parameters, the optimal code is obtained through
simple modifications of previously proposed single-user codes by Martinian et al. and the diversity embedded streaming codes
proposed by Badr, Khisti and Martinian. When both T1 < B2 and T2 < B1 + B2, the system is said to be in the low-delay
regime. We propose a new code construction and establish its optimality when T2 ≥ T1 +B1. In the case when T2 < T1 +B1,
we establish upper and lower bounds on the capacity and characterize the exact capacity when either T1 = B1 or T2 = B2. Our
upper bounds in the low-delay regime are based on novel information theoretic arguments that capture the tension between the
decoding constraints at the two receivers.

Index Terms

Streaming Communication Systems, Broadcast Channels with Common Message, Delay Constrained Communication, Appli-
cation Layer Error Correction, Burst Erasure Channels.

I. INTRODUCTION

A growing number of multimedia applications including video conferencing, cloud computing, and mobile gaming operate
in real-time and under strict delay constraints. Recent studies [1] indicate that voice over IP applications such as Skype use
a significant amount of forward error correction to mitigate packet losses over networks. Error correction codes are also
proactively used in many video conferencing systems [2]. Such systems are highly vulnerable to sporadic burst packet losses
and long packet delays in wireless networks. Thus the study of low-delay error correction codes over burst-erasure channels
is naturally motivated by these applications. Both the fundamental capacity limits and the error correction techniques for
communication systems that operate under strict delay constraints can be very different from classical capacity results. It is
well known that the (Shannon) capacity of an erasure channel only depends on the fraction of erasures — the actual location
of the erasures is not relevant. However this is not the case in streaming applications. For example, the decoding delay over
channels with burst erasures can be very different than the delay over memoryless channels.

As a first step towards understanding properties of optimal low-delay error correction codes in the presence of correlated
erasures, a new communication model has been introduced in [3]–[5]. A stream of source packets arrives sequentially at the
encoder, and is mapped to a stream of channel packets. The channel considered is a burst erasure channel which introduces
an erasure burst of maximum length B starting at an arbitrary time. Each source packet must be recovered within a maximum
(peak) delay of T packets. Such a streaming setup is relevant to many multimedia applications. For example in audio/video
streaming, the value of T is governed by the play-back delay of each source frame. While the burst erasure model considered
in [3]–[5] is somewhat simplistic, its analysis provides useful insights into constructing codes when channel losses are correlated.
A novel class of codes, Maximally Short (MS) codes, that satisfy the decoding constraints and achieve the maximum possible
rate over the burst erasure channel model is proposed.

In this work we extend the point to point model in [3]–[5] to a two user multicast setup, where the channel of the first user
introduces an erasure burst of length up to B1, while that of the second user introduces an erasure burst of length up to B2,
greater than B1. The decoding delay at the first user is T1 whereas that at the second user is T2. Both users are interested in
decoding the common source stream. We study the capacity as a function of these burst and delay parameters. We note that
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our model can also be viewed as a compound setup involving a single receiver with two different channels. However instead
of the worst-case scenario, the delay in our setup depends on the channel realization. One application of our setup is in error
concealment for adaptive media playback [6]. Such techniques adjust the play-out rate as a function of the receiver buffer size,
so that a temporary increase in delay can be naturally accommodated.

The multicast setup has been introduced previously in [7], [8]. Necessary and sufficient conditions under which the multicast
capacity equals the single user capacity of the stronger user i.e., user 1 were established. In particular it was shown that if
the delay of user 2 satisfies T2 ≥ B2

B1
T1 + B1, then the multicast capacity equals the capacity when user 1 is alone present.

A new construction, Diversity Embedded Streaming Codes (DE-SCo) was introduced that achieves this bound. The DE-SCo
construction exploits the relatively large value of T2 to apply two single user MS codes to the source stream, and superimposes
the resulting parity checks in a fashion that they do not interfere with one another. One of the codes is simply an optimal
single user MS code for user 1, while the other code for user 2 is constructed by taking advantage of the side information
available to this receiver from the first MS code.

In this paper we provide a more thorough treatment of the multicast capacity for all burst and delay parameters. In particular
we classify the system into two different operating regimes. The large delay regime corresponds to the case when T1 ≥ B2 or
T2 ≥ B1 +B2 i.e., one of the delays is sufficiently large. For this case we characterize the capacity, and show that it can be
obtained through certain modifications of the single user MS codes and the DE-SCo construction. Our key observation is that
in this regime without loss of optimality, the delay of one of the users can be reduced up to a certain critical threshold, to which
the previously proposed constructions are applicable. For the low delay regime, when T1 < B2 and T2 < B1 +B2, a new code
construction is proposed and shown to be optimal when T2 ≥ T1 +B1. In this regime our proposed code cannot keep the parity
checks for the two users non-interfering, as was done in DE-SCo. In order to account for the additional interference generated
due to overlapping parity checks, we construct and embed a third set of parity checks. The construction of these parity checks
must also satisfy the causality and delay constraints, which makes the analysis particularly challenging. Furthermore we also
remark that the upper bounds on the capacity in the low-delay regime are based on techniques that are significantly more
difficult than [7], [8]. The converse in [7], [8], requires constructing a periodic erasure channel (PEC) and establishing that
every erased packet in this channel can be recovered at the destination. Such an approach does not yield the tightest upper
bound for the low-delay regime. Our converse proofs are based on an information theoretic argument and capture certain new
tensions that arises due to the decoding constraints of the two receivers in the low-delay regime.

In the rest of the paper, Section II discusses related works and Section III introduces the streaming setup. We review the
results on single-user MS codes as well as the diversity embedded streaming codes [7], [8] in Section IV and summarize our
main results in Section V. In Section VI we provide an information theoretic converse for the single user capacity, which is
useful in the subsequent proofs. In Section VII we establish the capacity in the large delay regime while the subsequent sections
treat the low-delay regime. For the case when T2 ≥ T1 +B1 we establish the capacity by presenting the code construction in
Section VIII and the corresponding converse in Section IX. The case when T2 < T1 + B1 is treated in Sections X and XI.
We establish upper and lower bounds on the capacity in Section X, establish the capacity in the special cases when T1 = B1

and T2 = B2 in Sections XI-A and XI-B respectively, and present a conjecture on the capacity in Section XI-C. We finally
present the conclusions in Section XII.

II. RELATED WORK

We review prior works on low-delay codes for streaming for the interest of the reader, and discuss the differences with the
present work. References [3]–[5] introduce Maximally Short codes (MS) codes for the burst-erasure channel that introduces an
erasure burst of maximum length B, and with a decoding delay of T . These constructions involve a two step approach. In the
first step a block code is constructed with certain low-delay properties, and then interleaved to construct a streaming code. We
will briefly review these codes in Section IV. In [9]–[11], low-delay codes for a sliding window channel model with burst and
isolated erasures are proposed. A fundamental tradeoff between the burst erasure and isolated erasure correction properties of
any code is established, and a new class of codes, Maximum Distance And Span (MiDAS) codes, that achieves a near-optimal
tradeoff is proposed. These codes involve a layered code design, as opposed to the block-code construction of MS Codes.

The setup in [3]–[5] considers the case when one source packet arrives in each time-slot and one channel packet must be
transmitted in each slot. References [11]–[14] consider the case where the source arrival and channel transmission rates are
mismatched. In particular, M > 1 channel packets must be transmitted by the encoder between two successive source packets.
References [11], [12] consider the decoding delay in terms of the source packets and characterize the capacity for the case
of burst-erasure channels. The associated code constructions are based on layering and involve Strongly-MDS codes [15] as
constituent codes. References [13], [14] study a similar setup when the decoding delay is with respect to channel packets. For
the burst erasure model, diagonally interleaved block codes are shown to be optimal when gaps between successive bursts are
sufficiently small. For the i.i.d. erasure model a family of time-invariant intra-session codes are proposed with a performance
that is close to an upper bound.

In [16], [17], Lui et al. consider a model where the transmitter and receiver are connected through multiple parallel links.
Each link is assumed to be a burst erasure channel that introduces a burst of maximum length B. The capacity is characterized
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Fig. 1. The source stream {s[i]} is causally mapped into an output stream {x[i]}. Both the receivers observe these symbols via their channels. The channel
introduces an erasure-burst of length Bi, and each receiver tolerates a delay of Ti, for i = 1, 2.

in some special cases and joint coding across the sub-channels is required to attain the capacity. In [18], the problem of having
multiple erasure bursts within each coding block is studied. It is shown that the delay to recover any individual symbol not
only depends on the number of bursts within a coding block, but also on whether the source symbols are encoded causally or
non-causally.

As discussed previously, the two-user multicast model was proposed in [7], [8], but only the case when the multicast capacity
equals the single-user capacity of the stronger receiver was considered. In this paper we consider the more general question
on how the capacity behaves as a function of the burst and delay parameters i.e., B1, T1, B2 and T2. We note that some
preliminary results of this paper appeared in the conference version [19].

In the broader literature, problems involving real-time coding and compression have been studied from many different
perspectives. We briefly discuss some such approaches, although these are not directly relevant to the present work. Schul-
man [20] and Sahai [21] study coding techniques based on tree codes in a streaming setup with discrete memoryless channels.
Sukhavasi and Hassibi [22] have proposed linear time-invariant tree codes for the class of i.i.d. erasure channels, which are
attractive due to low decoding complexity. However, these works focus on i.i.d. channels and applications to control systems.
Adaptations of rateless codes for streaming are also studied in the literature. In [23], [24], the use of rateless codes with
overlapped sliding windows are considered for real-time requirements. In [25], a generalization of rateless codes is proposed
that involves Unequal Error Protection (UEP) and provides unequal recovery times. In [26], [27], the performance of LT codes
for single-server streaming to diverse users is investigated. Different users have different channel conditions as well as different
decoding capabilities. Optimization of the degree distribution is proposed and solved using linear programming. For the case
of feedback, Sahai [28] showed that for Discrete Memoryless Channels (DMC), feedback generally provides dramatic gains in
the error exponents when fixed end-to-end delay is considered. In [29], the authors proposed a new scheme which combines the
benefits of network coding and ARQ by acknowledging degrees of freedom instead of original packets. In [30]–[32], real-time
streaming over blockage channels with delayed feedback is studied. A multi-burst transmission protocol is proposed which
achieves a non-trivial tradeoff between the delay and throughput within this framework.

III. SYSTEM MODEL

Fig. 1 shows the proposed system model. The transmitter encodes a stream of source symbols {s[t]}t≥0 intended to be
received at two receivers. The channel symbols {x[t]}t≥0 are produced causally from the source stream, i.e.,

x[t] = ft(s[0], . . . , s[t]). (1)

The channel of receiver i introduces an erasure-burst of length Bi, i.e., the channel output at receiver i at time t is given by

yi[t] =

{
?, t ∈ [ji, ji +Bi − 1]
x[t], otherwise , (2)

where i ∈ {1, 2}, ji ≥ 0 and ? denotes an erasure. Furthermore, user i tolerates a delay of Ti, i.e., there should exist a sequence
of decoding functions γ1t(.) and γ2t(.) such that

ŝ[t] = γit(yi[0],yi[1], . . . ,yi[t+ Ti]), i = 1, 2, (3)

and Pr(s[t] 6= ŝ[t]) = 0, ∀t ≥ 0.
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The source stream is an i.i.d. process; each source symbol is uniformly sampled over some finite alphabet S = Fkq . The
channel symbols x[t] belong to some alphabet X = Fnq .

The rate of the multicast code is defined as the ratio of the (marginal) entropy of the source symbol to the alphabet size,
i.e., R = log |S|

log |X | = k
n , and the multicast streaming capacity is the maximum achievable rate.

Definition 1 (Multicast Streaming Capacity). A rate R is achievable if there exists a streaming code of this rate over some
field-size q such that if the channel introduces a burst of length Bi for i ∈ {1, 2}, every source symbol s[t] for t ≥ 0 can be
decoded with a delay of1 Ti. Such code is called a {(B1, T1), (B2, T2)} Multicast Streaming Code (Mu-SCo). The maximum
of all achievable rates is the multicast streaming capacity and is denoted by C(B1, T1, B2, T2).

Remark 1. Note that the considered model assumes a single erasure burst on each channel. However, the proposed constructions
correct multiple erasure bursts provided that each erasure pattern corresponds to a burst erasure of maximum length B1 followed
by a guard interval (with no erasures) of length T1, or alternately corresponds to a burst of maximum length B2 followed by
a guard interval of length T2. Furthermore note that if the actual guard interval after the burst Bi is only of length T̃i < Ti,
then a {(B1, T̃1), (B2, T̃2)} can be used over such a channel2.

Without loss of generality, we assume throughout the paper that B2 > B1. We only consider the burst-erasure channel model
in this paper. More general channel models that include both burst and isolated erasures can be potentially tackled using a
layered coding approach as discussed in [9]–[11]. However such extensions will not be considered in this work.

IV. BACKGROUND

To keep the paper self contained, we first briefly review the single user scenario [3]–[5]. We point the reader to these
references as well as a summary in [8] for a more exhaustive treatment.

A. Single User Capacity

Theorem 1 (Point-to-Point Capacity: [3]). The capacity of a point-to-point system described by (1), (2) and (3), with i = 1, is

C =

{
T

T+B T ≥ B
0 T < B,

(4)

where T1 and B1 are replaced by T and B for simplicity.

The associated (B, T ) Maximally-Short (MS) code construction involves the following steps.
• Maximum Distance Separable (MDS) Code: We start by constructing a (T, T −B) systematic MDS code over a finite

field Fq . We note that a (T, T −B) MDS code is capable of correcting B erasures in arbitrary locations (including burst
erasures). The corresponding generator matrix can be expressed as,

G =
[
IT−B H

]
(5)

where Ia denotes the a× a identity matrix whereas H is a (T −B)×B full rank matrix.
• Low Delay-Burst Erasure Block Code (LD-BEBC): We construct a systematic (T+B, T ) LD-BEBC from the previously

constructed (T, T −B) MDS Code with the generator matrix given by,

G? =

[
IB 0B×(T−B) IB

0(T−B)×B IT−B H

]
, (6)

where 0a×b is the a× b all zeros matrix. Thus after splitting the information symbols b ∈ FTq into two groups,

b = (u,n), where u ∈ FBq and n ∈ FT−Bq , (7)

the resulting codeword is given by

d = b ·G? = (u,n,u + n ·H) = (b, r), (8)

where we have used (7) and introduced r = u + n ·H to denote the parity check symbols in d in the last step. One can
show that the codeword d has the property that it is capable of correcting any burst of length B with a delay of at most
T symbols.

• Diagonal Interleaving: In this step, we convert the LD-BEBC constructed in the second step to a streaming code. We
start by splitting each source symbol s[t] ∈ FTq into T sub-symbols, i.e., s[t] = (s0[t], . . . , sT−1[t]), where sj [t] ∈ Fq for

1We note that the capacity is zero whenever T1 < B1 or T2 < B2. Thus we will assume throughout that Ti ≥ Bi in this paper.
2A similar approach is also considered in the single user case in [11].
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[i− 1] [i] [i+ 1] [i+ 2] [i+ 3] [i+ 4]

s0[i−1] s0[i] s0[i+1] s0[i+2] s0[i+3] s0[i+4]

s1[i−1] s1[i] s1[i+1] s1[i+2] s1[i+3] s1[i+4]

s2[i−1] s2[i] s2[i+1] s2[i+2] s2[i+3] s2[i+4]

s0[i−4]+s2[i−2] s0[i−3]+s2[i−1] s0[i−2]+s2[i] s0[i−1]+s2[i+1] s0[i]+s2[i+2] s0[i+1]+s2[i+3]

s1[i−4]+s2[i−3] s1[i−3]+s2[i−2] s1[i−2]+s2[i−1] s1[i−1]+s2[i] s1[i]+s2[i+1] s1[i+1]+s2[i+2]

TABLE I
A (2,3) MS CODE CONSTRUCTION IS ILLUSTRATED WHERE EACH SOURCE SYMBOL s[.] IS DIVIDED INTO THREE SUB-SYMBOLS s0[.], s1[.] AND s2[.] AND

A (5,3) LD-BEBC CODE IS THEN APPLIED ACROSS THE DIAGONAL TO GENERATE TWO PARITY CHECK SUB-SYMBOLS GENERATING A RATE 3/5 MS
CODE. EACH COLUMN CORRESPONDS TO ONE CHANNEL SYMBOL.

j ∈ {0, . . . , T − 1}. We then apply a (T +B, T ) LD-BEBC diagonally as follows. The information vector is constructed
by collecting sub-symbols diagonally as follows,

bt = (s0[t], s1[t+ 1], . . . , sT−1[t+ T − 1]), (9)

and the corresponding diagonal codeword dt = btG
? = (bt, rt) is then constructed according to (8). The resulting parity

check sub-symbols in rt,

rt = (r0[t], . . . , rB−1[t]) = (p0[t+ T ], . . . , pB−1[t+ T +B − 1]), (10)

and

pj [i] = sj [i− T ] + hj(sB [i− j − T +B], sB+1[i− j − T +B + 1], . . . , sT−1[i− j − 1]), j = 0, . . . , B − 1. (11)

where hj(v) denotes the mapping produced by multiplying the vector v by the jth column in H in (5). The parities
pj [i] ∈ Fq are then appended diagonally to the source stream to produce the channel input stream. The channel symbol
at time t is given by x[t] = (s[t],p[t]), where p[t] = (p0[t], . . . , pB−1[t]) is the parity check symbol at time t.

Notice that the operations in (9) and (10) construct a codeword diagonally across the incoming source sub-streams as
illustrated in Table I. A diagonal codeword is of the form

dt = (bt, rt) = (s0[t], . . . , sT−1[t+ T − 1], p0[t+ T ], . . . , pB−1[t+ T +B − 1]). (12)

The structure of the diagonal codeword (12) is also important in decoding. Suppose that symbols x[t], . . . ,x[t+B − 1] are
erased. It can be readily verified that there are also no more than B erasures in any diagonal codeword. Since each codeword
is a (T +B, T ) LD-BEBC, it recovers each erased symbol with a delay of no more than T symbols. This in turn implies that
all erased symbols are recovered by their deadline.

The converse is based on a periodic erasure channel (PEC) argument, similar to the upper bounding technique used in
classical burst-noise channels [33, Section 6.10]. The basic idea is to amplify the effect of a single erasure burst into a periodic
erasure channel and use the capacity of such a channel as an upper bound. We complement this argument with a rigorous
information theoretic proof for Theorem 1 in Section VI. The information theoretic proof is more general and provides a tighter
upper bound when we consider the multicast setup.

Table I illustrates a (2, 3) MS code capable of correcting a burst erasure of length B = 2 with a delay of T = 3.
Each source symbol is divided into T = 3 sub-symbols, s[i] = (s0[i], s1[i], s2[i]). A (5, 3) LD-BEBC (6) of the form
(b0, b1, b2, b0+b2, b1+b2) is then applied diagonally to the source sub-symbols, i.e., the corresponding diagonal codeword (12)
is given by

dt=(s0[t], s1[t+ 1], s2[t+ 2], s0[t] + s2[t+ 2], s1[t+ 1] + s2[t+ 2]) (13)

The channel input at time t is given by

x[t] = (s0[t], s1[t], s2[t], s0[t− 3] + s2[t− 1], s1[t− 3] + s2[t− 2]). (14)

The resulting channel input stream for t ∈ [i − 1, i + 4] is illustrated in Table I. Note that the rate of this code is T
T+B = 3

5
as it introduces two parity check sub-symbols for each three source sub-symbols.

For decoding, suppose that the channel introduces a burst erasure of length B = 2, i.e., x[i − 1] and x[i] are erased. The
decoder proceeds by recovering s2[i] and s2[i− 1] at time i+ 1. At time i+ 2, s0[i− 1] and s1[i− 1] can be recovered both
with a delay of T = 3. Likewise, s0[i] and s1[i] can be recovered with a delay of 3 from parity-check symbols at time i+ 3.

B. DE-SCo Construction
In earlier work [8], Badr et. al consider the proposed multicast setup when the delay of the weaker user, user 2, is sufficiently

large.
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Fig. 2. Capacity behavior in the (T1, T2) plane. We hold B1 and B2 as constants with (B2 > B1), so the regions depend on the relation between T1 and
T2 only. The red dashed line shows the contour of constant capacity in regions (a), (b), (c) and (d).

Theorem 2 (Badr et. al [8]). The multicast streaming capacity C(B1, T1, B2, T2) in the regime where B2 > B1 and T2 ≥
αT1 +B1 (with α = B2

B1
) is given by:

C1 =
T1

T1 +B1
. (15)

The associated code construction — Diversity Embedded Streaming Codes (DE-SCo) — involves constructing two groups of
parity checks: one along the main diagonal and the other along the opposite-diagonal and then combining these parity checks
in a suitable manner. As mentioned previously, a key property exploited in the DE-SCo construction is that the delay T2 is
sufficiently large, so that the parity checks of the two codes when superimposed do not interfere with one another. We omit
the details of the encoding and decoding steps as they are rather involved and refer the reader to [8]. A converse argument is
also provided in [8] to establish that T2 is indeed the smallest possible threshold to achieve the rate of C1.

V. MAIN RESULTS

We divide our results into two main regimes, the large-delay regime and the low-delay regime, which are treated separately
below.

A. Large-Delay Regime

The parameters of the DE-SCo construction in Theorem 2 fall within a larger class which we refer to as the large-delay
regime. In particular, if at least one of T1 and T2 is larger than a certain threshold:

T1 ≥ B2, (or) T2 ≥ B1 +B2. (16)

we have been able to determine the multicast capacity as stated in Theorem 3 below. In Fig. 2 this regime consists of all pairs
(T1, T2) outside the rectangular box [B1, B2)× [B2, B1 +B2).
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Theorem 3 (Multicast Capacity in Large-Delay Regime). When the delays T1 and T2 satisfy (16) and B2 > B1 the multicast
capacity is given by

C =


C1, T2 ≥ αT1 +B1,
T2−B1

T2−B1+B2
, T1 +B1 ≤ T2 ≤ αT1 +B1,

T1

T1+B2
, T1 ≤ T2 ≤ T1 +B1,

C2, T2 ≤ T1.

(17)

where Ci = Ti

Ti+Bi
is the single user capacity of user i = 1, 2 and we have defined α = B2

B1
. �

The proof of Theorem 3 appears in Section VII. The achievability scheme involves a suitable application of the DE-SCo
construction in Theorem 2 and single user MS codes. In particular, we exploit the following observation.

Remark 2. In each of the four cases in (17) the capacity only depends on either T1 or T2, but not on both of them simultaneously.
In particular, as shown in Fig. 2, the contour of constant capacity is a piecewise constant line. On the horizontal portions, the
delay T1 can be reduced without reducing the capacity whereas on the vertical portions the delay T2 can be reduced without
reducing the capacity. This property allows us to use code constructions at the two dominating points on each constant-capacity
contour. Note that the first dominating point is on the line T2 = αT1+B1 where the DE-SCo construction in Theorem 2 can be
effectively used with certain modifications to account for possibly non-integer valued code parameters. The second dominating
point is on the line T2 = T1, where a single-user MS Code in Theorem 1 can be used. We provide the details in Section VII.

The converse is based on a periodic erasure channel (PEC) argument. By simultaneously using the decoding constraints at
both the receivers we show that all erasures associated with a certain PEC can be recovered. Thus the capacity of this channel
serves as an upper bound for the multicast setup. As an example, consider the point {(B1, T1), (B2, T2)} = {(2, 4), (3, 6)}.
This point satisfies T2 = T1 + B1 and hence its capacity, from the third case in Theorem 3, is given by C = 4

7 . For the
converse, we consider a PEC with a period of 7, where the first three symbols are erased, and followed by four non-erased
symbols. We show the first period below.

�
�x[0] �

�x[1] �
�x[2] x[3] x[4] x[5] x[6] (18)

We argue that using a code C1 = (2, 4) and C2 = (3, 6) we can recover all the three erasures in this period by time 6. In
particular by applying C2, the source symbol s[0], and in turn x[0], is recovered by time T = 6. At this point the decoder
is left with an erasure burst of length 2. Upon applying C1, the sources symbols s[1] and s[2] are recovered at time 5 and
6 respectively. Thus all the three erasures in the first period are recovered at time 6. By repeating this argument in each
subsequent period, it follows that all the source symbols are recovered by the decoder. Thus the capacity of the above periodic
erasure channel, which is 4/7, constitutes an upper bound for the multicast setup. We note that a similar argument was also
used in [8] in the proof of Theorem 2. Nevertheless we provide the details in Lemma 2 for completeness.

B. Low-Delay Regime

We next consider the case when the delay pair (T1, T2) falls in the box [B1, B2)× [B2, B1 +B2), i.e.,

B1 ≤ T1 < B2, (and) B2 ≤ T2 < B1 +B2. (19)

This regime is more challenging compared to the large-delay regime and is the main focus of the paper. We further split
the low-delay regime into two regions, (e) and (f) as illustrated in Fig. 2. The capacity is characterized in region (e) as stated
in Theorem 4, whereas in region (f), upper and lower bounds are provided in Theorem 5. Furthermore, the capacity in region
(f) for the special cases T1 = B1 and T2 = B2 is provided in Propositions 1 and 2 respectively.

Theorem 4 (Capacity in Region (e)). The multicast streaming capacity in region (e) defined by T1 + B1 ≤ T2 ≤ B2 + B1

and B1 ≤ T1 < B2 is given by,

Ce =
T1

2T1 +B1 +B2 − T2
. (20)

�

The complete proof for Theorem 4 is divided into two main parts. The achievability scheme is provided in Section VIII
while the converse is given in Section IX.

The expression in (20) can be interpreted as follows. Consider the special case when T2 = B2. The rate in (20) can be
attained using a simple concatenation of two single user codes, a (B1, T1) MS code and a (T2, T2) repetition code. When
T2 6= B2, the parity check streams of these codes must overlap in T2 − B2 sub-symbols in order to attain (20). Our code
construction in Section VIII is based on this observation and involves embedding an additional set of parity-check symbols to
clear the interference due to such overlap.
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The converse in Section IX involves a new insight of revealing some of the source symbols to a virtual decoder to obtain a
tighter bound than the periodic erasure channel argument used in the converse proof of Theorem 3. As an example, consider
the multicast point {(B1, T1), (B2, T2)} = {(4, 5), (7, 10)} that belongs to region (e). To obtain the tightest upper bound, we
consider a PEC of period length 12 with the first 7 symbols in each period being being erased:

�
�x[0] �

�x[1] �
�x[2] �

�x[3] �
�x[4] �

�x[5] �
�x[6] x[7] x[8] x[9] x[10] x[11] (21)

The recovery at the decoder is based on the following sequence of steps using C1 = (4, 5) and C2 = (7, 10):

s[0], s[1] (at time 10, 11 using C2)

s[2] (revealed to the decoder)
s[3], s[4], s[5], s[6] (at time 8, 9, 10, 11 using C1) (22)

Note that in the above erasure pattern, after s[0] and s[1] have been recovered using C2, the decoder sees an erasure burst of
length 5. To apply C2, the decoder will need to go beyond time t = 11, which will result in a weaker upper bound. Similarly
C1 cannot be applied as well since it can only handle an erasure burst of length 4. Our new upper bound involves revealing
s[2] to the decoder to enable it to proceed using C1 for recovering the remaining symbols. Thus for the above pattern, a total
of 6 source symbols are recovered from 5 channel symbols. Thus the rate of 5/11 constitutes an upper bound.

A rigorous information theoretic proof based on the above approach is provided in Section IX.
The remainder of the low-delay regime is called region (f). For this region, we provide a general upper and lower bounds

on the capacity. The capacity remains open except in the special cases of either T1 = B1 or T2 = B2.

Theorem 5 (Bounds on Capacity in Region (f)). The multicast streaming capacity in region (f) defined by B2 ≤ T2 ≤ T1 +B1

and B1 ≤ T1 < B2 is upper and lower bounded as follows,

C−f ≤ Cf ≤ C
+
f , (23)

where the lower bound is given by,

C−f =
T1

2T1 +B1 +B2 − T2
(24)

and the upper bound is given by,

C+
f =

T2 −B1

2(T2 −B1) + (B2 − T1)
. (25)

�

We note that the rate expression in (24) is the same as the capacity expression in region (e) in Theorem 4. The code
construction is essentially the same as in Section VIII, but requires a modification in the decoder of user 1 as discussed in
Section X-A. The proof of the upper bound is given in Section X-B and also involves similar arguments as that used in the
converse proof of Theorem 4.

The bounds in Theorem 5 do not coincide in general. We identify special cases when each is tight as stated in the following
propositions.

Proposition 1 (Capacity in Region (f) at (T1 = B1)). The multicast streaming capacity in region (f) at the minimum delay
case for user 1 (T1 = B1) is given by,

Cf(T1=B1) = C+
f . (26)

�

To establish Proposition 1, we provide the encoding and decoding steps of the code construction achieving the rate in (26)
in Section XI-A. The code is obtained by concatenating the parity-check symbols of a (T1, T1) repetition code and a (B2 −
B1, T2 −B1) MS code. The converse is already proved in Theorem 5.

Proposition 2 (Capacity in Region (f) at (T2 = B2)). The multicast streaming capacity in region (f) at the minimum delay
case for user 2 (T2 = B2) is given by,

Cf(T2=B2) = C−f =
T1

2T1 +B1
. (27)

�

The achievability scheme is the same as that in Theorem 5 provided in Section VIII since substituting T2 = B2 in (24)
gives (27). The proof of the converse part for Proposition 2 is provided in Section XI-B. The technique is significantly
different than earlier converses and involves carefully double-counting the redundancy arising from the recovery of certain
source symbols. To illustrate the main idea consider the point {(B1, T1), (B2, T2)} = {(2, 3), (4, 4)}, which belongs to region
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Region Capacity Expression Code Construction Converse Proof
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DE-SCo PEC
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Region (b): Theorem 3
Cb = T2−B1

T2−B1+B2

DE-SCo + PEC
T1 +B1 < T2 < αT1 +B1 Source Expansion

Region (c): Theorem 3
Cc = T1

T1+B2
(B2, T1) MS Code PEC
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Region (d): Theorem 3
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(B2, T2) MS Code PEC
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Region (e): Theorem 4
Ce = T1

2T1+B1+B2−T2
Partial Concatenation Revealing

T2 ≥ T1 +B1

Region (f)
T2 < T1 +B1

Theorem 5,
Proposition 1, 2

C−f ≤ Cf ≤ C
+
f

C−f = T1

2T1+B1+B2−T2
Partial Concatenation -

C+
f = T2−B1

2(T2−B1)+(B2−T1)
- Revealing

Cf(T1=B1) = C+
f Simple Concatenation -

Cf(T2=B2) = C−f - Double-Counting

TABLE II
SUMMARY OF CAPACITY EXPRESSIONS, CODE CONSTRUCTIONS AND CONVERSE PROOFS OF ALL REGIONS IN THE CONSIDERED MULTICAST MODEL

WITH TWO USERS OF PARAMETERS {(B1, T1), (B2, T2)}. THE ACRONYM PEC STANDS FOR “PERIODIC ERASURE CHANNEL” AND α = B2
B1

.

(f). We consider a periodic erasure channel of period length B2 + T1 = 7 with the first B2 = 4 symbols in each period being
erased. The first period is given as follows:

�
�x[0] �

�x[1] �
�x[2] �

�x[3] x[4] x[5] x[6] (28)

Upon using the two codes C1 = (2, 3) and C2 = (4, 4), the recovery sequence is as follows:

x[4]→ s[0] (using C2)

x[5]→ s[1] (using C2)

x[6]→ s[2] (using C2)

x[4],x[5]→ s[2] (using C1)

x[5],x[6]→ s[3] (using C1) (29)

In the above steps note that s[2] has been recovered twice using two non-overlapping sets of channel symbols. In particular,
C1 used x[4] and x[5] to recover s[2] while C2 used x[6] to recover x[2]. Hence, the 3 available channel symbols are used
to recover effectively 5 source symbols (instead of 4) and the corresponding upper-bound is 3

8 . Recovering s[2] twice using
non-overlapping sets of channel symbols is what we refer to as double-counting. A rigorous information theoretic proof is
provided to substantiate this intuition in Section XI-B.

Finally a conjecture on the capacity in region (f), which is consistent with all the special cases above, is discussed in
Section XI-C.

This concludes the main results of the paper. For convenience of the reader, these are summarized in Table II.

VI. CONVERSE PROOF OF THEOREM 1

In this section we provide an information theoretic converse to Theorem 1. Our approach here will be useful in the multicast
setup in subsequent sections. Furthermore we establish the upper bound in a slightly more general setup where we allow for
(i) small error probability at the decoder and (ii) common randomness, independent of the source stream, at the encoder and
decoder.

Let us use the following notation:

s
[
b
a

]
=

{
s[a], s[a+ 1], . . . , s[b− 1], s[b], a ≤ b
∅, otherwise

(30)

W b
a =

{
Wa,Wa+1, . . . ,Wb−1,Wb, a ≤ b
∅, otherwise

(31)
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To establish the proof of Theorem 1, we consider a periodic erasure channel with a period length of B+T channel symbols.
In each period, the first B symbols are erased while the remaining T symbols are received at the decoder. In particular,
the i-th period consists of the channel symbols x[i(T + B)], . . . ,x[(i + 1)(T + B) − 1] among which the first B symbols,
x[i(T +B)], . . . ,x[i(T +B)+B−1] are erased whereas the T following symbols x[i(T +B)+B], . . . ,x[(i+1)(T +B)−1]
are not erased.

To aid us in our proof, let us introduce the terms

Vi = s
[
(i+1)(T+B)−1

i(T+B)

]
, V1,i = s

[
i(T+B)+B−1

i(T+B)

]
, V2,i = s

[
(i+1)(T+B)−1
i(T+B)+B

]
,

Wi = x
[
(i+1)(T+B)−1

i(T+B)

]
, W1,i = x

[
i(T+B)+B−1

i(T+B)

]
, W2,i = x

[
(i+1)(T+B)−1
i(T+B)+B

]
, (32)

where i ∈ {0, 1, 2, . . .}. Note that Vi = [V1,i, V2,i] refer to a group of source symbols, whereas Wi = [W1,i,W2,i] is a group of
channel symbols in the i-th period. We also note that the channel symbol at any time t is a causal function of source symbols,
i.e.,

x[t] = ft(s[0], . . . , s[t],M), (33)

where M is common randomness at encoder and decoder3. Fig. 3 shows the time slots that the symbols come from as well as
the size of Vi and Wi.

· · · · · · · · ·

V0 V1 Vi

W2,0 W2,1 W2,i

T +B

T

Fig. 3. The periodic erasure channel used in proving the upper bound of the single user scenario in Theorem 1, with indication of which symbols are in the
groups Vi and Wi. Grey and white squares denote erased and unerased symbols respectively.

Lemma 1. Consider a (B, T ) code which is capable of recovering each source symbol over a burst erasure channel, which
introduces an erasure burst of maximum length B, with a delay of T symbols and a maximum error probability of ε, i.e., each
output symbol

ŝ[t] = gt(y[0], . . . ,y[t+ T ],M) (34)

satisfies

Pr(s[t] 6= ŝ[t]) ≤ ε, ∀t ≥ 0. (35)

The following conditions hold for all n ≥ i+ 1,

H(V1,i|W i−1
0 ,Wn

2,0,M) ≤ B(H(ε) + ε log |S|), (36)

H(V2,i|W1,i,W
i−1
0 ,Wn

2,0,M) ≤ T (H(ε) + ε log |S|), (37)

where V1,i, V2,i, Wi, W1,i and W2,i is as in (32).

Proof: See Appendix A.
Eq. (36) considers an erasure burst that spans the interval [i(T +B), i(T +B) +B−1], and uses the fact that the associated

source symbols V1,i must be recovered when W2,i is received. By applying Fano’s inequality to each of the B symbols in
V1,i we obtain (36). Eq. (37) considers the recovery of the source symbols V2,i when the erasure burst spans W1,i+1. Upon
receiving of W2,i+1 each of the T symbols in V2,i must be recovered. In general, we do not need all of channel symbols Wn

2,0

in the conditioning, but the proof is simpler if we assume that all are available.

3We note that the same upper-bound in (38) is achieved when no common randomness is assumed. Hence, we will only consider deterministic codes and
M will be dropped in the subsequent converse proofs.



11

We now consider the following chain of inequalities:

n(T +B) log |S| = H(V n−10 )
(a)
= H(V n−10 |M) ≤ H(V n−10 ,Wn

2,0|M)

= H(Wn
2,0|M) +

n−1∑
i=0

(
H(V1,i|V i−10 ,Wn

2,0,M) +H(V2,i|V1,i, V i−10 ,Wn
2,0,M)

)
(b)
= H(Wn

2,0|M) +

n−1∑
i=0

(
H(V1,i|W i−1

0 ,Wn
2,0,M) +H(V2,i|W1,i,W

i−1
0 ,Wn

2,0,M)
)

(c)

≤ H(Wn
2,0|M) + n(T +B)(H(ε) + ε log |S|)

(d)

≤ H(Wn
2,0) + n(T +B)(H(ε) + ε log |S|)

≤ (n+ 1)T · log |X |+ n(T +B)(H(ε) + ε log |S|), (38)

where (a) holds due to independence of source symbols on the random variable M, (b) follows by using (33), (c) follows by
using Lemma 1 and (d) follows from the fact that conditioning reduces entropy.

Finally, we conclude from (38) that the rate of any (B, T ) streaming erasure code must satisfy

R =
log |S|
log |X |

≤ n+ 1

n
· T

T +B
+
H(ε) + ε log |S|

log |X |
n→∞,ε→0−−−−−−−→ T

T +B
, (39)

which gives the required upper bound on the rate.

VII. MULTICAST CAPACITY IN LARGE-DELAY REGIME (THEOREM 3)

We discuss in turn the achievability and converse of Theorem 3 in this section.

A. Achievability

The case in region (a) where the capacity equals C1 = T1

T1+B1
, was already addressed in Theorem 2 established in [8] using

the DE-SCo construction. Region (c), sandwiched between T1 ≤ T2 ≤ T1 +B1 and T1 ≥ B2 in Fig. 2 satisfies

Cc =
T1

T1 +B2
. (40)

In this region we can use a single user (B2, T1) MS code that simultaneously satisfies both the users. Clearly this code is
feasible since T1 ≥ B2. It satisfies user 1 since B2 > B1 and user 2 since T2 ≥ T1. Similarly in region (d), defined by T2 ≤ T1
and B2 ≥ B1, it suffices to serve user 2 using a single user MS code of parameters (B2, T2).

Thus the only remaining region of the large-delay regime in Fig. 2 is region (b). Recall that the capacity here is Cb =
T2−B1

T2−B1+B2
and T1 +B1 ≤ T2 ≤ αT1 +B1 holds. Since the capacity does not depend on T1, we can keep reducing the value

of T1 to T̃1 such that
T2 = αT̃1 +B1,

where α = B2

B1
. This is equivalent to

T̃1 =
B1

B2
(T2 −B1). (41)

Provided that T̃1 ≥ B1, and furthermore T̃1 is an integer, we can use a {(B1, T̃1), (B2, T2)} DE-SCo [8] to achieve
T̃1

T̃1+B1
= Cb and hence for the original point in region (b). The former condition is equivalent to T2 ≥ B2+B1 which is satisfied

by every point in region (b). If T̃1 is not an integer, a suitable source expansion is needed, where we split each source stream
into sufficiently many, say M sub-streams such that MT̃1 is an integer. We can then construct a {(MB1,MT̃1), (MB2,MT2)}
DE-SCo and show that it is feasible on the original channel. Details are relegated to Appendix B.

Example: We consider the point {(B1, T1), (B2, T2)} = {(1, 2), (2, 4)}, which belongs to region (b) in Theorem 3. The
capacity at this point is C = 3/5. We note that this point is dominated by the point {(B1, T

′
1), (B2, T2)} = {(1, 1.5), (2, 4)}

which belongs to the line T2 = B2

B1
T1 +B1. However we cannot directly construct a DE-SCo for this point as T ′1 is not integer

valued. Instead we construct a DE-SCo with parameters {(2, 3), (4, 8)} with rate 3/5 and observe using the source expansion
technique in Appendix B, that the resulting code can be mapped to the original parameters.

B. Converse

For the converse we start by establishing an upper bound on the multicast streaming capacity in the large-delay regime as
follows,
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Lemma 2. For any two receivers with burst-delay parameters of (B1, T1) and (B2, T2), the multicast streaming capacity is
upper bounded by C ≤ C+, where

C+ =

{
T2−B1

T2−B1+B2
T2 > T1 +B1,

T1

T1+B2
T2 ≤ T1 +B1,

(42)

Proof: The proof of Lemma 2 is provided in Appendix C. It involves simultaneously using the decoding constraints of
both the receivers and a periodic erasure channel (PEC) argument similar to the single-user case.

We further tighten the upper bound in (42) using the fact that the multicast streaming capacity cannot exceed the single user
capacity on any of the two links:

CU = min
{
C+, C1, C2

}
=


C1 , Ca, T2 ≥ αT1 +B1
T2−B1

T2−B1+B2
, Cb, T1 +B1 < T2 < αT1 +B1

T1

T1+B2
, Cc, T1 < T2 ≤ T1 +B1

C2 , Cd, T2 ≤ T1.

(43)

where recall that α = B2

B1
. This completes the proof of the converse.

VIII. ACHIEVABILITY SCHEME IN REGION (E) (THEOREM 4)

We show that for any point in region (e) in Fig. 2 that satisfies, T1 +B1 ≤ T2 ≤ B2 +B1 and B1 ≤ T1 < B2, there exists
a multicast code that achieves the following rate:

Ce =
T1

2T1 +B1 +B2 − T2
(44)

Towards this end we parametrize the T2 and B2 as

T2 = T1 +B1 +m, B2 = T1 + k +m, m ≥ 0, k ∈ [0, B1] (45)

Substituting into (44), the capacity simplifies to

Ce =
T1

2T1 + k
. (46)

In our construction we first consider two codes, one for each user as follows.
• Split each source symbols s[i] in T1 sub-symbols

s[i] = (s0[i], . . . , sT1−1[i])

• Let C1 be a (B1, T1) MS code, as described in Section IV applied to the source symbols s[i] producing B1 parity check
sub-symbols

p1[i] = (p10[i], . . . , p1B1−1[i]) (47)

at each time by combining the source sub-symbols diagonally:

p1j [i] = sj [i− T1] + h1j (sB1 [i− j − T1 +B1], . . . , sT1−1[i− j − 1]), j = {0, 1, . . . , B1 − 1}, (48)

where recall that h1j (·) denote a linear combination of the sub-symbols sB1 [i − j − T1 + B1], . . . , sT1−1[i − j − 1] as
in (11).

• Let C2 be simple repetition code applied to the source symbols s[i] with a delay of T2, i.e.

p2[i] = (p20[i], . . . , p2T1−1[i]) = (s0[i− T2], . . . , sT1−1[i− T2]) = s[i− T2]. (49)

• Concatenate the two streams p1[·] and p2[·] in (47) and (49) with a partial overlap of

T2 −B2 = B1 − k

symbols as illustrated in (50). The two streams of parity checks p1[·] and p2[·] are concatenated with the last B1 − k
rows of the first added to upper most B1 − k rows of the second.
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x̃[i] =



s0[i]
...
sT1−1[i]
p10[i]
...
p1k−1[i]

p1k[i] +s0[i− T2]
...

p1B1−1[i] +sB1−k−1[i− T2]
sB1−k[i− T2]
...
sT1−1[i− T2]



(50)

Note that x̃[i] consists of a total of T1 sub-symbols of s[i], B1 parity-check sub-symbols of p1[i] and T1 parity-check
sub-symbols of p2[i] with an overlap of B1 − k sub-symbols. Thus the rate associated with x̃[i] satisfies (46).

As we will see, the above construction needs to be further extended by embedding a third code onto the non-overlapping
parity checks of C2. To motivate this we begin by considering the decoding at both the receivers.

A. Decoding at Receiver 1

At receiver 1 suppose that the erasure burst spans the interval [i − B1, i − 1]. We need to reconstruct each s[t] for t ∈
[i− B1, i− 1] with a delay of T1. The parity checks p1[·] that will be required at the decoder span I1 = [i, i+ T1 − 1]. We
claim that the overlapping parity checks s2[t] for t ∈ I1, as illustrated in (50) are not erased and hence can be cancelled out.
In particular, consider t = i. The overlapping s[i− T2] is clearly not erased since T2 ≥ B2 > B1, by definition. At the other
extreme when t = i+ T1 − 1, we have:

i+ T1 − T2 − 1 ≤ i−B1 − 1 (51)

since T2 ≥ B1 + T1 in region (e). Thus s[t − T2] is again associated before the start of the erasure burst and is not erased.
Thus it follows that for each t ∈ I1 the overlapping s[t− T2] in (50) is not erased and can be cancelled out to recover p1[t]
with no additional delay. At this point one can use the decoder associated with C1, which is a (B1, T1) MS Code, to recover
each erased source symbol with a delay of T1.

B. Decoding at Receiver 2

At receiver 2 we suppose that the erasure burst spans the interval [i−B2, i−1]. We are required to reconstruct each s[t] for
t ∈ [i−B2, i− 1] with a delay of T2. Recall that the parity check p2[t] = s[t− T2] is merely a repetition code with a shift of
T2. Thus if we can cancel the overlapping p1[t] for t ∈ [i−B2 + T2, i+ T2 − 1], we can recover each erased source symbol
with a delay of T2. Now note that using (45) we have that T2 − B2 = B1 − k and 0 ≤ k ≤ B1 holds. We can partition the
interval [i, i+ T2 − 1] into three sub-intervals as follows:
• J1 = [i, i+ T2 −B2 − 1]. For each t ∈ J1 we have that t− T2 ≤ i−B2 − 1, and thus the overlapping s[t− T2] is not

erased. Thus one can cancel the overlapping s[t− T2] and recover p1[t] in (50). Note that in this interval the portion of
s[t− T2] that does not overlap with p1[·] is not used in the recovery.

• J2 = [i+ T2 −B2, i+ T1 − 1]. For each t ∈ J2 we have that both s[t− T2] are erased and the overlapping p1[t] involve
source symbols in the interval [t−T1, t−1], which may be erased. In this case one cannot recover sub-symbols sj [t−T2]
for j = 0, . . . , B1 − k− 1. However we recover sj [t− T2] for j = B1 − k, . . . , T1 − 1. Thus a subset of s[t− T2] cannot
be recovered.

• J3 = [i + T1, i + T2 − 1]. For each t ∈ J3, we have that p1[t] involves source symbols in the interval [t − T1, t − 1],
since the memory of the code C1 is T1 (see Section IV). Since these source symbols appear after the erasure burst and
hence are erased, one can cancel the overlapping p1[t] and thus recover p2[t] = s[t− T2]. Thus it follows that the erased
source symbol t− T2 is recovered from (50).

To summarize the above steps, when the erasure burst spans the interval [i−B2, i− 1] at receiver 2, the code construction
in (50) is not able to recover source sub-symbols sj [t−T2] for j ∈ {0, . . . , B1−k−1} and t ∈ {i+B1−k, . . . , i+T1−1}. These
(B1−k)·(T1−B1+k) sub-symbols are illustrated by the shaded box in Fig. 4. Secondly, in the interval J1 = [i, i+B1−k−1],
all the parity check symbols p2[t] correspond to the source symbols that are not erased. The total number of sub-symbols that
do not overlap with p1[t], illustrated by the region with hatched lines in Fig. 4 also equals (B1− k) · (T1−B1 + k), the same
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p2[.]
p3[.]

p1[.]

s[.]Layer (1)

Layer (2)

Layer (3)

Layer (4)

[i-B2+T2]

Erased Non-Erased

T1

k
B1

T1

J1 J2 J3
[i] [i+T1] [i+T2][i-B2]

Fig. 4. A graphical illustration of the structure of the code construction. The labels on the right show the layers spanned by each set of parity check
sub-symbols. The labels at the bottom show the intervals in which each set of parity check sub-symbols combine erased source sub-symbols. Note that the
construction x̃[i] in (50) involves an overlap between p1[·] and p2[·] as shown. The shaded symbols cannot be recovered at user 2. To recover these we use
a third layer of parity check symbols p3[·] that are embedded in the last T1 − (B1 − k) rows as shown.

as the number of shaded sub-symbols. We next describe our code construction that uses these available positions to recover
the missing source symbols.

C. Construction of C3
We extend our construction of x̃[i] to incorporate a third set of parity check symbols q[i] = (q0[i], . . . , qT1−(B1−k)−1[i]) so

that the transmitted symbol x[i] is expressed as follows:

x[i] =



s[i]
p10[i]
...
p1k−1[i]

p1k[i] +s0[i− T2]
...

p1B1−1[i] +sB1−k−1[i− T2]
sB1−k[i− T2] +q0[i]

...
sT1−1[i− T2] +qT1−(B1−k)−1[i]



(52)

We show that by judiciously selecting q[·], these parity check symbols in J1 can be used to recover the parity symbols
p1[t] for t ∈ J2 and ultimately all the source symbols. As remarked before, the number of available parity sub-symbols of
q[·] in J1, which are denoted by the region with the hatched lines is sufficient to recover the erased sub-symbols of p1[·] in
the interval J2, which are shaded in Fig. 4. However in the construction of q[·] one needs to satisfy two additional properties
in the streaming construction.
• Causality: Each q[t] must only depend on the source symbols up to time t.
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• Delay Constraint: Each p1[t] for t ∈ J2 must be reconstructed with zero delay, so that the underlying source symbol
s[t− T2] can be recovered with a delay of T2.

We discuss the construction of q[·] separately in the cases when T1 ≤ 2(B1 − k), and when T1 > 2(B1 − k) below.
1) Case (A) T1 ≤ 2(B1 − k): We define T3 = B1 − k and B3 = T1 − (B1 − k), and consider a code C3 that is a (B3, T3)

single-user MS code applied to the last B1 − k parity check symbols of p1[·] i.e., to (p1k[i], . . . , p1B1−1[i]). Such a code is
feasible since B3 ≤ T3, due to T1 ≤ 2(B1 − k). Thus we let

p3[i] = (p30[i], . . . , p3T1−(B1−k)−1[i]) (53)

by combining the last B1 − k parity check sub-symbols, (p1k[.], . . . , p1B1−1[.]), diagonally, i.e.,

p3j [i] = p1k+j [i− T3] + h3j
(
p1k+B3

[i− j − T3 +B3], . . . , p1k+T3−1[i− j − 1]
)
, (54)

for j = {0, 1, . . . , T1 − (B1 − k) − 1} and h3j (·) involves the linear combination associated with the MS code, as defined
in (11).

We note that the code C3 is a MS code. It can recover a burst of length B3, spanning the interval J2 = [i+T3, i+T3+B3−1]
with a delay of T3, provided the following conditions are satisfied:
• The associated parity check symbols p3[t] in the interval t ∈ [i+ T1, i+ T1 + T3 − 1] are available.
• The symbols p1[t] for t ∈ J1 = [i, i+ T3 − 1] which is the period of length T3 = T2 −B2 symbols preceding the burst

are available to the decoder.
As noted before, the interfering symbols of p2[t] for t ∈ J1 can be cancelled out and thus p1[t] for t ∈ J1 are available.
Furthermore, in order to retrieve the required p3[t] from the hatched lines in Fig. 4, we apply a backward shift of T1 source
symbols and let

q[t] = p3[t+ T1] (55)

With the above mapping, each required p3[t] for t ∈ [i+T1, i+T1 +T3−1] can be retrieved from the corresponding q[t−T1],
which span the interval J1 and hence are available. However the choice of q[t] in (55) does not satisfy the causality condition.
This is because p3[t+T1] can potentially depend on source symbols after time t whereas q[t] must only depend on the source
symbols up to time t. Therefore we need to modify (55) to only send the causal part of p3[t+T1] at time t as discussed next.

Definition 2 (Causal and Non-Causal Parts of a Parity-Check). Consider a linear parity check sub-symbol pj [t1] generated
over source stream s[t]. For any t2 ≤ t1 we can express

pj [t1] =←−p j [t1]
∣∣
t2

+−→p j [t1]
∣∣
t2

(56)

where←−p j [t1]
∣∣
t2

and −→p j [t1]
∣∣
t2

denote the causal and non-causal parts of the parity check pj [t1] with respect to t2, respectively.
The causal part, ←−p j [t1]

∣∣
t2

, is obtained by replacing all source symbols s[t] from time t > t2 with zeros in pj [t1], whereas
the non-causal part, −→p j [t1]

∣∣
t2

, is obtained by replacing all source symbols from time t ≤ t2 with zeros in pj [t1].
Recall that in (56) we use the fact that pj [t1] is a linear combination of source sub-symbols (see (11)).

Example 1. Consider the parity check p0[5] = s0[1] + s1[2] + s2[3] + s3[4]. The causal and non-causal parts with respect to
t2 = 2 are given by,

←−p 0[5]
∣∣
2

= s0[1] + s1[2]
−→p 0[5]

∣∣
2

= s2[3] + s3[4], (57)

respectively. In particular, ←−p 0[5]
∣∣
2

is equal to p0[5] after removing all source sub-symbols later than time t = 2 whereas
−→p 0[5]

∣∣
2

is the same but after removing all source sub-symbols from time before and including time t = 2.

Hence, we replace the parity-check symbol p3[i+T1] with its causal part ←−p 3[i+T1]
∣∣
i

in (55) as discussed in Definition 2,
i.e.,

q[i] =←−p 3[i+ T1]
∣∣
i

=
(←−p 3

0[i+ T1]
∣∣
i
, . . . ,←−p 3

T1−(B1−k)−1[i+ T1]
∣∣
i

)
. (58)

We now revisit the decoding analysis for user 2 in Section VIII-B. Suppose that the symbols in the interval I2 = [i−B2, i−1]
are erased by the channel of user 2. The main steps at the decoder are summarized as follows. We refer to the four layers as
illustrated in Fig. 4.
• Step (1) (Recovery of p1[·]): The parity checks ←−p 3[t + T1]

∣∣
t

in the interval t ∈ J1 = [i, i + B1 − k − 1] (which
correspond to the hatched region in Fig. 4), are used to recover the last B1 − k sub-symbols of p1[t] for t ∈ J2 =
{i+B1 − k, . . . , i+ T1 − 1} by time t. These correspond to the shaded symbols in Fig 4.

• Step (2) (Removal of p1[·]): Subtract p1[t] in layer (3) in the interval t ∈ J2 ∪J3 = [i+B1− k, i+T2− 1] and recover
the underlying sub-symbols of p2[t] that overlap with them.
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• Step (3) (Removal of p3[·]): Compute and subtract p3[t] in layer (4) in the interval t ∈ J2∪J3 = [i+B1−k, i+T2−1]
and recover the underlying sub-symbols of p2[t] that overlap with them.

• Step (4) (Recovery using p2[·]): Use p2[t] for t ∈ [i + B1 − k, i + T2 − 1] to recover the erased source symbols,
(s[i−B2], . . . , s[i− 1]).

Having summarized the four steps, we provide a justification for each of them below. Step (1) is the most elaborate step
and is established in Appendix D. We summarize it in the following lemma.

Lemma 3. When the erasure burst spans the interval I2 = [i − B2, i − 1], the decoder at receiver 2 can recover each of
the overlapping parity sub-symbols, p1j [t], for t ∈ J2 = [i + B1 − k, i + T1 − 1] and j ∈ {k, . . . , B1 − 1} by time t, using
←−p 3
j [t+ T1]

∣∣
t

for t ∈ J1 = [i, i+B1 − k − 1] and the unerased source symbols starting from time i.

Proof: See Appendix D.
Step (2) (Removal of p1[·]): Once the overlapping parity check sub-symbols of C1 in the interval J2 = [i+B1−k, i+T1−1]

have been recovered in Step (1), they can be cancelled to recover the parity check sub-symbols of C2. Those symbols p1[t]
appearing in the interval t ∈ J3 = [i+ T1, i+ T2 − 1] are clearly functions of unerased source symbols (since the underlying
MS code has a memory of T1); these can be computed by the decoder, and cancelled at time t to recover the parity check
sub-symbols of C2.

Step (3) (Removal of p3[·]): Recall that C3 is a (B3, T3) MS code with a memory of T3 = B1 − k. We show that the
interfering p3[·] in the interval J2 ∪ J3 = [i + T3, i + T2 − 1] can be computed by the decoder and cancelled. Consider the
parity check at time i+ T3, ←−p 3[i+B1 − k+ T1]

∣∣
i+B1−k

. Following (54), it involves parity check sub-symbols p1[t] of C1 of
time

i+B1 − k − T3 + T1 = i+ T1

and later. In computing the above we subtract T3 from the time index, as this is the memory of the code, and add T1 as this
corresponds to the backward shift. Furthermore as argued in Step (2) above, the parity check sub-symbols of C1 at time i+T1
and later only combine unerased source symbols. Thus the overlapping p3[t] can be computed and cancelled out as claimed.
In a similar fashion all other such symbols in the interval [i+ T3, i+ T2 − 1] can be cancelled out.

Step (4) (Recovery using p2[·]): Using the previous two steps each p2j [t] for j ∈ {0, . . . , T1 − 1} and t ∈ {i + B1 −
k, . . . , i + T2 − 1} can be recovered by time t. Since p2[i + B1 − k] = s[i + B1 − k − T2] = s[i − B2] it follows that each
erased source symbol can be recovered with a delay of T2.

This completes the decoding analysis at receiver 2. Since the analysis of decoder 1 remains unchanged, the achievability
proof is complete when T1 ≤ 2(B1 − k) holds.

2) Case (B): T1 > 2(B1 − k): To complete the proof, it remains to consider the case T1 > 2(B1 − k). In this case
B1 − k < T1 − (B1 − k), therefore the MS code with B3 = T1 − (B1 − k), and T3 = B1 − k constructed before is no longer
feasible. We begin by expressing T1 − (B1 − k) as follows:

T1 − (B1 − k) = r(B1 − k) + q, 0 ≤ q < (B1 − k) and r ≥ 1. (59)

We construct a total of r + 1 codes C3,n as follows. For n = 1, . . . , r we let C3,n to be a (B1 − k,B1 − k) repetition code
applied to the last B1 − k sub-symbols in p1[i], shifted back by n(B1 − k) i.e., the corresponding parity check symbols are
given by:

p3,n[i] = (p3,n0 [i], . . . , p3,nB1−k−1[i]) = (p1k[i+ n(B1 − k)], . . . , p1B1−1[i+ n(B1 − k)]). (60)

Let C3,r+1 be a (B3,r+1, T3,r+1) = (q,B1 − k) MS code again applied on the last B1 − k parity check sub-symbols
(p1k[i], . . . , p1B1−1[i]) and then constructing q parity checks p3,r+1[i] = (p3,r+1

0 [i], . . . , p3,r+1
q−1 [i]) at each time by combining

the last B1 − k parity check sub-symbols, (p1k[.], . . . , p1B1−1[.]) as in (54) after replacing B3 and T3 with B3,r+1 and T3,r+1

respectively.
Concatenate the set of streams p3,n[.] for n = 1, . . . , r and p3,r+1[.] after introducing a shift of ∆3,r+1 = −T1 in the later

and keeping its causal part. The output symbol at time i is as in (52) where,

q[i] = (q0[i], . . . , qT1−(B1−k)−1[i]) = (←−p 3,1[i]
∣∣
i
, . . . ,←−p 3,r[i]

∣∣
i
,←−p 3,r+1[i+ T1]

∣∣
i
) (61)

is the concatenation of the causal part of the r+1 parity check sub-streams for the codes C3,n for n = 1, . . . , r+1, respectively.
We let C3 be the result of concatenating {C3,1, . . . , C3,r+1} and let p3[t] be the result of concatenating the parity sub-symbols
as in (61).

In the decoding analysis we only need to revisit steps (1) and (3) in the case T1 ≤ 2(B1−k) above. We show that Lemma 3
continues to hold for the above construction in Appendix D, i.e., each p1[t] for t ∈ [i+ B1 − k, i+ T1 − 1] can be decoded
with zero delay using the parity sub-symbols of p3[t] in the interval t ∈ [i, i+B1 − k − 1].

In step (3) we need to show that each p3[t] for t ∈ [i+B1− k, i+T2− 1] can be cancelled to recover the associated p2[t].
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(d) Step (4)

Fig. 5. Main steps of finding the upper bound for the {(4, 5), (7, 10)} point lying in region (e) through one period illustration of the Periodic Erasure
Channel. Grey and white squares denote erased and unerased symbols respectively while hatched squares denote symbols revealed to the receiver.

For each n = 1, 2, . . . , r we have from (60) that
←−p 3,n[t]

∣∣
t

= p1[t+ n(B1 − k)]
∣∣
t

(62)

We note that if t + n(B1 − k) ≥ i + T1 then since C1 has a memory of T1 it follows that p1[t + n(B1 − k)] only involves
source symbols s[·] after time i, which are not erased. Thus these parity sub-symbols can be computed by the decoder. If
instead t+ n(B1 − k) < i+ T1 then each such ←−p 1[t+ n(B1 − k)]

∣∣
t

is recovered at time i+B1 − k− 1 as it is recovered via
Lemma 3, and hence is available to the decoder. Finally for n = r + 1 the decoder can compute and cancel ←−p 3,r+1[t+ T1]|t
in a manner analogous to step (3) in case (A).

D. Examples

In Appendix E we provide two examples of the code constructions with parameters {(4, 5), (7, 10)} and {(3, 5), (7, 9)}
corresponding to the two cases when T1 ≤ 2(B1 − k) and T1 > 2(B1 − k) discussed above.

IX. CONVERSE PROOF IN REGION (E) (THEOREM 4)

We start by considering the example {(4, 5), (7, 10)} illustrating the steps of the converse proof. Then, we will provide a
rigorous converse proof for any point in region (e). We again use the periodic erasure channel technique with a period of
length 12 and assume that the first 7 of these symbols are erased. With 7 erasures, code C2 = (7, 10) can recover the first
two symbols s[0] and s[1] by time 10 and 11, respectively (cf. Fig. 5(b)). Since code C1 = (4, 5) is not capable of recovering
the remaining 5 erasures, we reveal the first symbol at time t = 2 to the decoder. Now, C1 can recover the source symbols
s[3], . . . , s[6] by times 8 to 11, respectively (i.e., incurring a delay of 5 symbols). Finally the unerased symbols in t ∈ [7, 11]
are guaranteed to be recovered using the (7, 10) code in the following period. Thus a total of 5 unerased channel symbols
are sufficient to recover 6 erased source symbol. Therefore one can see that a rate of 5/11 upper bounds the capacity of this
channel.

· · ·

a = T1 +B2 − T2
b = B2 −B1

c = B2

d = B2 + T1

Fig. 6. One period of the periodic erasure channel used to prove an upper bound on capacity in region (e). Grey and white squares denote erased and
unerased symbols respectively..

For the general case, one period of the periodic erasure channel to be used is shown in Fig. 6. Each period has B2 erasures
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followed by T1 non-erasures. We can assign

a = T1 +B2 − T2, b = B2 −B1, c = B2, d = B2 + T1 (period length),

V1,i = s
[
id+a−1
id

]
, V2,i = s

[
id+b−1
id+a

]
, V3,i = s

[
id+c−1
id+b

]
, V4,i = s

[
(i+1)d−1
id+c

]
W1,i = x

[
id+a−1
id

]
, W2,i = x

[
id+b−1
id+a

]
, W3,i = x

[
id+c−1
id+b

]
, W4,i = x

[
(i+1)d−1
id+c

]
Vi = (V1,i, V2,i, V3,i, V4,i), Wi = (W1,i,W2,i,W3,i,W4,i)

We use the decoder of receiver 2 to recover s
[
a−1
0

]
within a delay of T2 using the channel symbols x

[
d−1
c

]
. We then

reveal the channel symbols x
[
b−1
a

]
. The decoder of receiver 1 can now be used to recover the next B1 source symbols, which

are the symbols s
[
c−1
b

]
, using x

[
d−1
c

]
again. In general, we may not have a systematic code, so even if x

[
d−1
c

]
is received,

we may not be able to recover the corresponding source symbol s
[
d−1
c

]
. Instead, s

[
d−1
c

]
can be recovered using the second

decoder and the first and second sets of channel symbols that are not erased, i.e., x
[
d−1
c

]
and x

[
2d−1
d+c

]
.

So far, we have recovered (T1 +B2−T2)+B1 +T1 = 2T1 +B1 +B2−T2 source symbols, using 2T1 channel symbols. We
do not include the source symbols s

[
b−1
a

]
, because it cannot be decoded from the information in the unerased channel symbols.

The channel has a period of B2+T1 symbols, and if we had n periods, then we would be able to recover n(2T1+B1+B2−T2)
source symbols using (n+ 1)T1 channel symbols. Therefore, we can suppose that the upper bound on the multicast streaming
capacity is given by

R ≤ n+ 1

n
· T1

2T1 +B1 +B2 − T2
n→∞−−−−→ T1

2T1 +B1 +B2 − T2
(63)

The more formal proof is as follows. We start by defining the capability of the C1 = (B1, T1) and C2 = (B2, T2) codes
in ith period. In particular, a similar argument to that used in the proof of Lemma 1 can be used to get the following for
n ≥ i+ 1,

H(V1,i|W i−1
0 ,Wn

4,0) = 0, H(V3,i|W1,i,W2,i,W
i−1
0 ,Wn

4,0) = 0,

H(V4,i|W1,i,W2,i,W3,i,W
i−1
0 ,Wn

4,0) = 0 (64)

Hence,

n(2T1 +B1 +B2 − T2) log |S| = H(V n−11,0 , V n−13,0 , V n−14,0 )
(a)
= H(V n−10 )−H(V n−12,0 )

≤ H(V n−10 ,Wn
4,0)−H(V n−12,0 )

= H(Wn
4,0) +

n−1∑
i=0

(
H(V1,i|V i−10 ,Wn

4,0) +H(V2,i|V1,i, V i−10 ,Wn
4,0)

+H(V3,i|V1,i, V2,i, V i−10 ,Wn
4,0) +H(V4,i|V1,i, V2,i, V3,i, V i−10 ,Wn

4,0)−H(V2,i|V i−12,0 )
)

(b)

≤ H(Wn
4,0) +

n−1∑
i=0

(
H(V1,i|V i−10 ,Wn

4,0) +H(V3,i|V1,i, V2,i, V i−10 ,Wn
4,0)

+H(V4,i|V1,i, V2,i, V3,i, V i−10 ,Wn
4,0)
)

(c)
= H(Wn

4,0) +

n−1∑
i=0

(
H(V1,i|W i−1

0 ,Wn
4,0) +H(V3,i|W1,i,W2,i,W

i−1
0 ,Wn

4,0)

+H(V4,i|W1,i,W2,i,W3,i,W
i−1
0 ,Wn

4,0)
)

(d)
= H(Wn

4,0) ≤ (n+ 1)T1 · log |X |, (65)

where (a) follows from the fact that source symbols are i.i.d., (b) follows using the fact that conditioning reduces entropy, (c)
holds since channel symbols are causal functions of source symbols (cf. (1)) and (d) follows by using (64).

Finally, we conclude that the rate of any {(B1, T1), (B2, T2)} code in region (e) must satisfy,

R =
log |S|
log |X |

≤ n+ 1

n
· T1

2T1 +B1 +B2 − T2
n→∞−−−−→ T1

2T1 +B1 +B2 − T2
(66)

which matches the our upper bound on the rate in (20).
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X. UPPER AND LOWER BOUNDS IN REGION (F) (THEOREM 5)
A. Lower Bound

We note that the lower bound C−f in Theorem 5 is the same expression as the capacity Ce in Theorem 4. We argue that
the code construction in region (e) can also be used in region (f). The only difference between the two regions is that the
condition T2 ≥ T1 + B1 is satisfied in region (e) whereas T2 < T1 + B1 holds in region (f). Upon examining the decoding
analysis for the code in region (e), we note that the requirement T2 ≥ T1 +B1 is not used in the analysis of decoder 2. It is
however used in the analysis of decoder 1 and in particular in (51). Fortunately it turns out that this condition is not necessary
in the decoding analysis for user 1. As such only the condition T2 > T1 is required, which holds in region (f) since T1 < B2

holds in this region and B2 ≤ T2 holds by definition. Thus we only need to explain a modified decoding procedure such that
T2 ≥ T1 +B1 is not required.

We consider a channel that introduces a burst of length B1 in the interval [i−B1, i− 1] and show that the source symbols
s[i−B1 + j] for j ∈ {0, . . . , B1 − 1} are recovered at time i−B1 + T1 + j.

Since C1 is a (B1, T1) MS code, it suffices to show that in the interval t ∈ [i, i−B1 + T1 + j] the parity symbols p1[t] are
all available by time i−B1 + T1 + j by cancelling the interfering p2[t] = s[t− T2] in this period.

We establish the above property recursively starting with j = 0 and considering the interval t ∈ [i, i + T1 − B1]. The
parity-check symbols of C2, given by p2[t] = s[t−T2], are not erased. This follows since t−T2 ≤ i+T1−B1−T2 < i−B1

since T2 > T1. Hence the overlapping p1[t] in this interval can be recovered and used to recover s[i−B1] at time i+T1−B1.
For each j > 0, we assume recursively that the source symbols up to time i − B1 + j − 1 are recovered and the parity

checks p1[·] in the interval [i, i−B1 + T1 + j − 1] are also available. We claim that at time t = i−B1 + j + T1, the source
symbol s[i− B1 + j] and the parity check p1[i− B1 + j + T1] can also be recovered. Note that the interfering parity check
p2[i−B1+j+T1] is the source symbol s[i−B1+j+T1−T2] which has been recovered since i−B1+j+T1−T2 ≤ i−B1+j−1
as T2 > T1. Thus this symbol can be cancelled out to compute p1[i−B1 + j+T1] and in turn the source symbol s[i−B1 + j]
can be recovered.

The claim now follows.

B. Upper Bound
The proof of the upper bound in region (f) uses a revealing argument similar to that used in the converse proof in region

(e) provided in Section IX. We shall use Fig. 7 to illustrate one period of the periodic erasure channel used in this proof. One
period contains B2 erasures followed by T2 −B1 non-erasures, for a total of B2 + T2 −B1 symbols.

· · ·

a

b

c

d

T2 −B1T2 − T1B2 −B1

Fig. 7. One period of the periodic erasure channel used to prove the first upper bound in region (f). Grey and white squares denote erased and unerased
symbols respectively.

The first B2 −B1 source symbols can be recovered with code C2, from x
[
B2+T2−B1−1

B2

]
, which are the T2 −B1 unerased

channel symbols. We can see that s[0] is recovered at time T2, while s[B2 −B1 − 1] is recovered at time B2 + T2 −B1 − 1.
Code C1 recovers the next T2 − T1 source symbols, which is s

[
B2−B1+T2−T1−1

B2−B1

]
. We then reveal the remaining channel

symbols in the block of B2 erased symbols, which are the symbols x
[

B2−1
B2−B1+T2−T1

]
. Finally, code C2 is used to recover

s
[
B2+T2−B1−1

B2

]
, using two sets of T2 −B1 unerased channel symbols, which are x

[
B2+T2−B1−1

B2

]
and x

[
2B2+2T2−2B1−1

2B2+T2−B1

]
.

In this one period of B2 + T2 − B1 symbols, we have recovered s
[
B2−B1−1

0

]
, s
[
B2−B1+T2−T1−1

B2−B1

]
and s

[
B2+T2−B1−1

B2

]
.

This is a total of 2(T2 −B1) + (B2 − T1) source symbols recovered by 2(T2 −B1) channel symbols. We can extrapolate that
n(2(T2 −B1) + (B2 − T1)) source symbols can be recovered by (n+ 1)(T2 −B1) channel symbols. As in region (e) proof,
we can suppose that the upper bound on the capacity is:

R =
log |S|
log |X |

≤ n+ 1

n
· T2 −B1

2(T2 −B1) + (B2 − T1)

n→∞−−−−→ T2 −B1

2(T2 −B1) + (B2 − T1)
(67)

For the formal proof, we assign the following:

a = B2 −B1, b = B2 −B1 + T2 − T1, c = B2, d = B2 + T2 −B1 (period length),
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V1,i = s
[
id+a−1
id

]
, V2,i = s

[
id+b−1
id+a

]
, V3,i = s

[
id+c−1
id+b

]
, V3,i = s

[
(i+1)d−1
id+c

]
W1,i = x

[
id+a−1
id

]
, W2,i = x

[
id+b−1
id+a

]
, W3,i = x

[
(id+c−1
id+b

]
, W4,i = x

[
(i+1)d−1
id+c

]
Vi = (V1,i, V2,i, V3,i, V4,i), Wi = (W1,i,W2,i,W3,i,W4,i)

A similar argument to that used in the proof of Lemma 1 can be applied to C1 = (B1, T1) and C2 = (B2, T2) codes, i.e.,
for n ≥ i+ 1,

H(V1,i|W i−1
0 ,Wn

0 ) = 0, H(V2,i|W1,i,W
i−1
0 ,Wn

0 ) = 0,

H(V4,i|W1,i,W2,i,W3,i,W
i−1
0 ,Wn

0 ) = 0 (68)

Hence,

n(2(T2 −B1) + (B2 − T1)) log |S| = H(V n−11,0 , V n−12,0 , V n−14,0 )
(a)
= H(V n−10 )−H(V n−13,0 )

≤ H(V n−10 ,Wn
4,0)−H(V n−13,0 )

= H(Wn
4,0) +

n−1∑
i=0

(
H(V1,i|V i−10 ,Wn

4,0) +H(V2,i|V1,i, V i−10 ,Wn
4,0)

+H(V3,i|V1,i, V2,i, V i−10 ,Wn
4,0) +H(V4,i|V1,i, V2,i, V3,i, V i−10 ,Wn

4,0)−H(V3,i|V i−13,0 )
)

(b)

≤ H(Wn
4,0) +

n−1∑
i=0

(
H(V1,i|V i−10 ,Wn

4,0) +H(V2,i|V1,i, V i−10 ,Wn
4,0)

+H(V4,i|V1,i, V2,i, V3,i, V i−10 ,Wn
4,0)
)

(c)
= H(Wn

4,0) +

n−1∑
i=0

(
H(V1,i|W i−1

0 ,Wn
4,0) +H(V2,i|W1,i,W

i−1
0 ,Wn

4,0)

+H(V4,i|W1,i,W2,i,W3,i,W
i−1
0 ,Wn

4,0)

(d)
= H(Wn

4,0) ≤ (n+ 1)(T2 −B1) · log |X |, (69)

where (a) follows from the fact that source symbols are i.i.d., (b) follows using the fact that conditioning reduces entropy, (c)
follows by using (1) and (d) follows by using (68).

In other words,

R =
log |S|
log |X |

≤ n+ 1

n
· T2 −B1

2(T2 −B1) + (B2 − T1)

n→∞−−−−→ T2 −B1

2(T2 −B1) + (B2 − T1)
(70)

Therefore, (70) governs the rate of any {(B1, T1), (B2, T2)} code in region (f).

XI. SPECIAL CASES IN REGION (F)

We present the capacity region in region (f) for the special cases when T1 = B1 and T2 = B2 and then present a conjecture
on the capacity in the general case in this section.

A. Achievability Scheme in Region (f) at T1 = B1 (Proposition 1)

For the special case when T1 = B1, we provide a code construction that attains the upper bound C+
f in this section. We

begin with an example of {(4, 4), (5, 6)} Mu-SCo construction of rate 2/5, as shown in Table III. We split each source symbol
into two sub-symbols as shown. A (4, 4) repetition code is applied resulting in the first two rows of parity checks and then a
(B2 − B1, T2 − T1) = (1, 2) MS code is applied and the resulting parity checks are shifted by T1 = 4 forming the last row.
Note that the first user can recover from any burst erasure of length 4 within a delay of 4 symbols using the first two rows
of parity check sub-symbols. For the second user, suppose a burst erasure of length 5 takes place from time i − 5 to i − 1.
Notice that user 2 recovers s1[i− 5] and s0[i− 5] respectively from the last two parity checks at time t = i+ 1, i.e., with a
delay of T2 = 6. The rest of the erased source symbols are recovered with a delay of T1 = 4 using the repetition code.

1) Code Construction: Our proposed code construction, which achieves the minimum delay for user 1, i.e., T1 = B1 is as
follows
• Split each source symbol s[i] into T2 −B1 = T2 − T1 sub-symbols

s[i] = (s0[i], . . . , sT2−T1−1[i])
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[i] [i+ 1] [i+ 2] [i+ 3] [i+ 4] [i+ 5]

s0[i] s0[i+1] s0[i+2] s0[i+3] s0[i+4] s0[i+5]

s1[i] s1[i+1] s1[i+2] s1[i+3] s1[i+4] s1[i+5]

s0[i−4] s0[i−3] s0[i−2] s0[i−1] s0[i] s0[i+1]

s1[i−4] s1[i−3] s1[i−2] s1[i−1] s1[i] s1[i+1]

s0[i−6]+s1[i−5] s0[i−5]+s1[i−4] s0[i−4]+s1[i−3] s0[i−3]+s1[i−2] s0[i−2]+s1[i−1] s0[i−1]+s1[i]

TABLE III
MU-SCO CONSTRUCTION FOR (B1, T1) = (4, 4) AND (B2, T2) = (5, 6). THIS POINT ACHIEVES THE UPPER BOUND C+

f GIVEN IN THEOREM 5 AS
STATED IN PROPOSITION 1 SINCE T1 = B1 = 4.

� � � � � � �

(a) Step (1)
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��������	��
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(b) Step (2)
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(c) Step (3)
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��������	��
�



(d) Step (4)

Fig. 8. Main steps of finding the upper bound for the {(2, 3), (4, 4)} point lying in region (f) through one period illustration of the Periodic Erasure Channel.
Grey and white squares denote erased and unerased symbols respectively. Note that the symbol 2 is recovered by both codes C1 and C2.

.
• Let C1 be the single user (B1, T1) = (T1, T1) MS code obtained by repeating the source symbols them to produce T2−T1

parity check sub-symbols, i.e.,

p1[i] = (p10[i], . . . , p1T2−T1−1[i]) = (s0[i− T1], . . . , sT2−T1−1[i− T1]) = s[i− T1]. (71)

• Let C2 be a (B2 − B1, T2 − T1) MS code applied to the source symbols s[i] and then constructing (B2 − B1) parity
checks p2[i] = (p20[i], . . . , p2B2−B1−1[i]) at each time by combining the source sub-symbols diagonally.

• Concatenate the two streams p1[·] and p2[·] after introducing a shift of T1 in the second stream. The output symbol at
time i is x[i] = (s[i],p1[i],p2[i− T1]).

Since there are T2 − T1 and B2 − B1 parity check sub-symbols for every T2 − T1 source sub-symbols, it follows that the
rate of the code is T2−T1

2(T2−T1)+(B2−B1)
= C+

f .
2) Decoding at User 1: A burst erasure of length B1 can be directly recovered using the stream of parity checks p1[·]

produced by code C1 within a delay of T1. Recall that this immediately follows since the parity checks of the two codes are
concatenated and not added.

3) Decoding at User 2: Suppose that the symbols x[i − B2], . . . ,x[i − 1] are erased by the channel of user 2. We first
show how the receiver can recover s[t] for t ∈ [i − B2, i − B1 − 1] at time t+ T2. To recover s[t], the code C2 which is a
(T2 − T1, B2 − B1) code, can be used provided that the corresponding parity checks starting at time i − B1 are available.
Due to the forward shift of T1 = B1 applied in our construction, these parity checks appear starting at time t = i and are
clearly not erased. Secondly for the recovery of s[t] we also need the source symbols in the interval [i − B1, t + T2 − T1].
The C1 repetition code guarantees that these are in fact available by time t+T2. This shows that all the erased symbols in the
interval [i− B2, i− B1 − 1] can be recovered. The remaining symbols in the interval [i− B1, i− 1] are recovered using the
C1 repetition code. This completes the decoding analysis for user 2.

B. Converse Proof in Region (f) at T2 = B2 (Proposition 2)

In contrast to the special case when T1 = B1, where the upper bound C+
f in Theorem 5 is shown to be tight, we show that

in the case when T2 = B2 the lower bound C−f is the true capacity. We do this by presenting a tighter upper bound, which
depends on double recovery of some source symbols, once using code C1 and another using C2. We illustrate the main idea of
such converse through considering the specific point {(2, 3), (4, 4)} shown in Fig. 8. We start by considering a periodic erasure
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· · ·

T1

B1 T1

B2

Fig. 9. One period of the periodic erasure channel used to prove an upper bound on capacity in region (f) for the special case T2 = B2. Grey and white
squares denote erased and unerased symbols respectively.

channel with period length 7. The first 4 symbols are erased while the rest are unerased. With 4 erasures, code C2 = (4, 4)
can recover the first two symbols s[0] and s[1] by time 4 and 5, respectively. We note that the channel symbol at time i is
sufficient to recover the source symbol at time i− 4 (i.e., no more channel symbols are required). Step (3) in Fig. 8 gives the
main idea of this converse. Since, there are two remaining erasures, the source symbol s[2] can be recovered using C1 = (2, 3)
within a delay of 3 (i.e., by time 5). Also, the same source symbol can be decoded using C2 by time 6 (double recovery).
The remaining erasure can be recovered using C1 by time 6. Moreover, the repetition code C2 = (4, 4) can recover the source
symbols s[4], s[5] and s[6] from their corresponding channel symbols. Therefore, the three channel symbols are capable of
recovering a total of 8 source symbols (symbol at time 2 is recovered twice) which implies that a rate of 3/8 is an upper
bound.

For the general case, one period of the corresponding periodic erasure channel to be used for proving the upper bound is
given in Fig. 9. Each period has B2 erasures followed by T1 non-erasures.

In Fig. 9, we have the first period of the erasure channel. The key is to show that the received channel symbols x
[
B2+T1−1

B2

]
alone can recover all of the source symbols in the period, but there is enough information in the channel symbols to recover
some of the source symbols twice. The fact that we have two decoders allows some of the source symbols to be decoded by
mutually exclusive groups of channel symbols, but when we put all of the channel symbols together, the redundant information
in the channel symbols does affect the maximum achievable rate of the code.

The source symbols that can be recovered by x
[
B2+T1−1

B2

]
are s

[
T1−1

0

]
, s
[
B2−1
B2−B1

]
and s

[
B2+T1−1

B2

]
. As Figure 9 shows,

the first two groups of source symbols overlap. The overlap consists of the symbols s
[
T1−1
B2−B1

]
. The reason why we can use a

single period in the proof is because the B2 = T2 constraint allows us to decode the final group of source symbols s
[
B2+T1−1

B2

]
using only the symbols x

[
B2+T1−1

B2

]
and does not require any future channel symbols.

Assuming that what we have just described is possible, then we have T1 channel symbols recovered 2T1 + B1 source
symbols. We should be able to write the relation:

(2T1 +B1) · log |S| ≤ T1 · log |X |

R =
log |S|
log |X |

≤ T1
2T1 +B1

(72)

The formal proof shows that this is indeed possible. We can split the proof into three major parts.
1. The source symbols s

[
B2−B1−1

0

]
and s

[
2B2−B1−T1−1

B2−B1

]
can be recovered from the channel symbols x

[
2B2−B1−1

B2

]
using

the (B2, B2) and (B1, T1) decoders respectively, i.e.,

H
(
s
[
B2−B1−1

0

]∣∣∣x[ 2B2−B1−1
B2

])
= 0, (73)

H
(
s
[
2B2−B1−T1−1

B2−B1

]∣∣∣x[ 2B2−B1−1
B2

]
s
[
B2−B1−1

0

])
= 0. (74)

Next, we can write

H
(
x
[
2B2−B1−1

B2

])
= H

(
s
[
B2−B1−1

0

]
, s
[
2B2−B1−T1−1

B2−B1

]
,x
[
2B2−B1−1

B2

])
−H

(
s
[
B2−B1−1

0

]∣∣∣x[ 2B2−B1−1
B2

])
−H

(
s
[
2B2−B1−T1−1

B2−B1

]∣∣∣s[B2−B1−1
0

]
,x
[
2B2−B1−1

B2

])
(a)
= H

(
s
[
2B2−B1−T1−1

0

]
x
[
2B2−B1−1

B2

])
= H

(
s
[
2B2−B1−T1−1

0

])
+H

(
x
[
2B2−B1−1

B2

]∣∣∣s[ 2B2−B1−T1−1
0

])
= H

(
s
[
2B2−B1−T1−1

0

])
+H

(
x
[
2B2−B1−1

B2

]∣∣∣s[ 2B2−B1−T1−1
0

]
,x
[
2B2−B1−T1−1

0

])
, (75)

where we used (73) and (74) to remove the negative terms before step (a).
2. In this step, we show that two source symbols s[m−B2] and s[m−T1] can be recovered from each added channel packet
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x[m] for m ∈ {2B2 −B1, . . . , B2 + T1 − 1}. We start by establishing the following lemma.

Lemma 4. The following inequality is true for all m ≥ 2B2 −B1 − 1:
m∑

i=B2

H(x[i]) ≥ H
(
s
[
m−B2

0

])
+H

(
s
[
m−T1

B2−B1

])
+H

(
x
[
m
B2

]∣∣∣s[m−B2

0

]
s
[
m−T1

B2−B1

]
x
[
m−B2

0

])
(76)

Proof: See Appendix F.
We then substitute m = B2 + T1 − 1 into (76)

B2+T1−1∑
i=B2

H(x[i]) ≥ H
(
s
[
T1−1

0

])
+H

(
s
[
B2−1
B2−B1

])
+H

(
x
[
B2+T1−1

B2

]∣∣∣s[T1−1
0

]
s
[
B2−1
B2−B1

]
x
[
T1−1

0

])
. (77)

3. We can recover s
[
B2+T1−1

B2

]
from x

[
B2+T1−1

B2

]
given the previous channel symbols x

[
B2−1

0

]
using decoder 2, so we

can write
H
(
s
[
B2+T1−1

B2

]∣∣∣x[B2+T1−1
0

])
= 0. (78)

Using (78), we continue with (77) to get,
B2+T1−1∑
i=B2

H(x[i]) ≥ H
(
s
[
T1−1

0

])
+H

(
s
[
B2−1
B2−B1

])
+H

(
x
[
B2+T1−1

B2

]∣∣∣s[T1−1
0

]
s
[
B2−1
B2−B1

]
x
[
T1−1

0

])
= H

(
s
[
T1−1

0

])
+H

(
s
[
B2−1
B2−B1

])
+H

(
s
[
B2+T1−1

B2

]
x
[
B2+T1−1

B2

]∣∣∣s[T1−1
0

]
s
[
B2−1
B2−B1

]
x
[
B2−1

0

])
−H

(
s
[
B2+T1−1

B2

]∣∣∣s[T1−1
0

]
s
[
B2−1
B2−B1

]
x
[
B2+T1−1

0

])
(d)
= H

(
s
[
T1−1

0

])
+H

(
s
[
B2−1
B2−B1

])
+H

(
s
[
B2+T1−1

B2

]
x
[
B2+T1−1

B2

]∣∣∣s[T1−1
0

]
s
[
B2−1
B2−B1

]
x
[
B2−1

0

])
= H

(
s
[
T1−1

0

])
+H

(
s
[
B2−1
B2−B1

])
+H

(
s
[
B2+T1−1

B2

]∣∣∣s[T1−1
0

]
s
[
B2−1
B2−B1

]
x
[
B2−1

0

])
+H

(
x
[
B2+T1−1

B2

]∣∣∣s[T1−1
0

]
s
[
B2+T1−1
B2−B1

]
x
[
B2−1

0

])
= H

(
s
[
T1−1

0

])
+H

(
s
[
B2+T1−1
B2−B1

])
+H

(
x
[
B2+T1−1

B2

]∣∣∣s[T1−1
0

]
s
[
B2+T1−1
B2−B1

]
x
[
B2−1

0

])
≥ H

(
s
[
T1−1

0

])
+H

(
s
[
B2+T1−1
B2−B1

])
(79)

where step (d) makes use of (78).
Finally, we use the fact that all source symbols have the same entropy and all channel symbols have the same size to write,

B2+T1−1∑
i=B2

H(x[i]) ≥ H
(
s
[
T1−1

0

])
+H

(
s
[
B2+T1−1
B2−B1

])
T1 · log |X | ≥ (2T1 +B1) · log |S|

R =
log |S|
log |X |

≤ T1
2T1 +B1

(80)

which matches the upper bound in (27).

C. Conjectured Capacity in Region (f)

Conjecture 1. For any given point {(B1, T1), (B2, T2)} in region (f) defined by B2 ≤ T2 ≤ T1 +B1 and B1 ≤ T1 < B2, the
capacity is given by,

Cf =
T1

2T1 + B2−T1

T2−T1
B1

. (81)

One can see that the capacity in (81) coincides with the capacity results in Propositions 1 and 2 by simply substituting
T1 = B1 and T2 = B2 respectively in (81). It also maintains the continuity in capacity at the edges of region (f) with regions
(c) and (e). In particular, the results of substituting B2 = T1 and T2 = T1 +B1 in (81) match the second case in (17) and (20),
respectively.

For a given B1 and T1, the conjectured capacity is constant for all points satisfying,

B2 − T1
T2 − T1

= k ⇒ T2 =
1

k
(B2 − T1) + T1. (82)
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T2

B2
(B1,B1)

T1

T1

T1 + B1

2T1

T 2
 = 

B 2

2B1

T 2
 =

 α
T 1 

+ 
B 1

T 2
 = 

B 2
 + B 1

(d)

(f)

(e)

(c)

(b)

(a)

Constant capacity lines 
in Region (e)

- Constant capacity lines in Region (f) for 
T1=B1 and conjectured to be the constant 
capacity lines in the general case.
- The conjecture matches the capacity on 
all proved cases including T1=B1 case and 
the three sides of the region (f) triangle.

Fig. 10. Capacity behavior in the (B2, T2) plane. We hold B1 and T1 as constants, so the regions depend on the relation between T2 and B2 only. The
dashed line gives the contour of constant capacity in region (e) as well as in the special case of T1 = B1 in region (f).

Hence, the capacity can be shown to be constant on the straight lines passing through the point (B2, T2) = (T1, T1) and slope
1/k in Fig. 10. However, this point is not included since Cf in (81) is undetermined at (B2, T2) = (T1, T1). The capacity at
this point is 1

2 and can be obtained from the capacity in region (c) given by (40).
Also note that the capacity expression in region (e), Ce, only depends on B2 and T2 via the difference B2−T2. To identify

the contour of constant capacity in region (e), it is natural to fix B1 and T1 and classify the various regions as shown in
Fig. 10. Observe that the streaming capacity for any point in region (e) is constant across the 45-degrees line and is equal to
the multicast upper bound at the lowest point on the horizontal line, T2 = T1 +B1, separating regions (e) and (f) in Fig. 10.

An example of region (f) with (B1, T1) = (10, 16) is illustrated in Fig. 11. Different points denote different B2 and T2
values as shown on the x and y axes respectively. The fraction at each point is the conjectured capacity as per (81). One can
see that the conjectured capacity is constant on the straight lines passing through the point (B2, T2) = (T1, T1) = (16, 16) but
not including it.

XII. CONCLUSION

We study a multicast extension of the low-delay codes for streaming over burst erasure channels. We observe an interesting
interplay between the delay of the two receivers from a capacity point of view. In particular, in the large-delay regime we
characterize the capacity and observe that the delay of one of the receivers can be reduced up to a certain critical value without
reducing the capacity. This enables us to use simple modifications of previously proposed codes to establish the capacity. In
the low-delay regime a new code construction is proposed and it is shown to be optimal in a subset of this regime. New
upper bounds that are tighter than previously proposed techniques are developed and shown to be tight for a certain class of
parameters. Finally in the cases where the exact capacity has not been characterized a conjecture is also provided.

While the focus of this work has been on the case of burst erasure channels only, we believe that the code constructions
can be extended in a natural way to deal with both burst and isolated erasure patterns. For the single user case, it has been
recently shown [11] that a low delay code for the burst erasure channel can be extended using a layered construction to correct
both burst and isolated erasures and is shown to outperform baseline codes over statistical channels such as Gilbert-Elliott
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Fig. 11. An example of region (f) in the (B2, T2) plane for (B1, T1) = (10, 16). The dashed lines give some examples of the contour of constant conjectured
capacity in region (f). This conjecture is proved for the cases B2 = T1 which is the left vertical edge of the triangle, T2 = T1 + B1 which is the upper
horizontal edge of the triangle and T2 = B2 which is the right 45-degrees edge. It is also proved for the special case of T1 = B1 which is not shown in
this figure.

and Fritchman channels. It will be an interesting future work to examine whether such a layered approach can be used for
multicast. More generally the constructions presented in this paper are a step towards constructing delay-universal streaming
codes, where the decoding delay adapts to the channel conditions. Finally we note that the low delay codes for burst erasure
channels are a class of convolutional codes with a certain column-span [11]. The multicast extension treated in this work
appears to require codes with a certain column-span profile. Establishing such algebraic properties of the convolutional codes
also appears to be an interesting direction for further research and might lead to a natural extension of streaming codes for
multiple users.
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APPENDIX A
PROOF OF LEMMA 1

. . . j − r2 . . . j − 1 j . . . . . . j + r1 . . . . . . . . . j +B − 1 j +B . . . j − r2 + T . . . . . . j + r1 + T · · ·

T

B

T

Fig. 12. A channel introducing a single burst of length B in the interval [j, j + B − 1] used in proving Lemma 1. Grey and white squares denote erased
and unerased symbols respectively.

We start by considering a simple channel which introduces one burst of length B in the interval [j, j +B − 1] as shown in
Fig. 12. A (B, T ) code is capable of recovering each source symbol within a delay of T and maximum error probability ε as
defined in (35). We are only interested in the recovery of the two sets, s[j + r1] for r1 ∈ {0, . . . , B − 1} and s[j − r2] for
r2 ∈ {1, . . . , T}. Applying Fano’s inequality [34] to each of these source symbols we have that:

H
(
s[j + r1]

∣∣x[ j−10 ],x[ j+r1+Tj+B

]
,M
)
≤ H(ε) + ε log |S|, r1 ∈ [0, B − 1], (83)

H
(
s[j − r2]

∣∣x[ j−10 ],x[ j−r2+Tj+B

]
,M
)
≤ H(ε) + ε log |S|, r2 ∈ [1, T ]. (84)
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To establish Lemma 1, first recall our notation in (32),

Vi = s
[
(i+1)(T+B)−1

i(T+B)

]
, V1,i = s

[
i(T+B)+B−1

i(T+B)

]
, V2,i = s

[
(i+1)(T+B)−1
i(T+B)+B

]
,

Wi = x
[
(i+1)(T+B)−1

i(T+B)

]
, W1,i = x

[
i(T+B)+B−1

i(T+B)

]
, W2,i = x

[
(i+1)(T+B)−1
i(T+B)+B

]
, (85)

where i ∈ {0, 1, 2, . . .}. We then start from the L.H.S. of (36) and use chain rule as follows,

H(V1,i|W i−1
0 ,Wn

2,0,M)
(a)

≤ H(V1,i|W i−1
0 ,W2,i,M) = H

(
s
[
i(T+B)+B−1

i(T+B)

]∣∣∣W i−1
0 ,W2,i,M

)
=

B−1∑
r1=0

H
(
s[i(T +B) + r1]

∣∣∣s[ i(T+B)+r1−1
i(T+B)

]
,W i−1

0 ,W2,i,M
)

(b)

≤
B−1∑
r1=0

H
(
s[i(T +B) + r1]

∣∣∣W i−1
0 ,W2,i,M

)
(c)

≤
B−1∑
r1=0

H
(
s[i(T +B) + r1]

∣∣∣x[ i(T+B)−1
0

]
,x
[
i(T+B)+r1+T
i(T+B)+B

]
,M
)

(d)

≤
B−1∑
r1=0

(H(ε) + ε log |S|) = B (H(ε) + ε log |S|) , (86)

where (a) and (b) uses the fact that conditioning reduces entropy and (a) uses that n ≥ i+1, (c) follows since x
[
i(T+B)+r1+T
i(T+B)+B

]
⊆

W2,i for r1 ∈ [0, B − 1], whereas (d) uses (83) at j = i(T +B). This establishes (36). Using (84) a similar argument can be
used to establish (37), and its proof will be omitted.

APPENDIX B
SOURCE EXPANSION

We start by giving a definition of source expansion as follows.

Definition 3 (Source Expansion). A (p, r) expansion of the source stream s[·] consists of,
• Splitting each source symbol s[i] ∈ Frpq into rp sub-symbols each in Fq , i.e., s[i] = (s0[i], s1[i], . . . , srp−1[i]).
• Rearranging the rp sub-symbols into r groups each with p sub-symbols as follows,

s̃[ri] = (s0[i], . . . , sp−1[i])

s̃[ri+ 1] = (sp[i], . . . , s2p−1[i])

...
...

s̃[ri+ r − 1] = (s(r−1)p[i], . . . , srp−1[i]), (87)

where s̃[·] is the expanded source stream.

The relation between the decoding capability of a MS code on the original stream and that on the expanded stream is
discussed in the following lemma.

Lemma 5. Consider a (p, r) expansion of the source stream s[·] to s̃[·]. A (rB, T̃ ) MS code applied to s̃[·] is capable of
recovering a burst of length B symbols within a delay of T = d T̃r e on the original stream s[·].

Proof: Suppose that a (rB, T̃ ) MS code be applied to s̃[·] to generate the channel symbols x̃[·]. These symbols are
multiplexed together, and the input on the channel at time i is

x[i] = (x̃[ri], x̃[ri+ 1], . . . , x̃[ri+ r − 1]). (88)

We suppose the channel erases a burst of length B on the original stream in the interval [i, i+ B − 1]. By using (88) this
corresponds to an erasure burst in the interval [ri, r(i+B)− 1] on the expanded stream of x̃[·]. This is a total of rB erasures
in a burst and is thus recoverable using the (rB, T̃ ) MS code within a delay of T̃ on the expanded stream. Each source symbol
s[j] for j ∈ {i, i+B− 1} is recovered once the last corresponding expanded source symbol, s̃[rj+ r− 1] is recovered. Using
the (rB, T̃ ) MS code, such symbol is recovered by time rj+ r−1 + T̃ . This is equivalent to time b rj+r−1+T̃r c on the original
stream (cf. (88)). Hence, s[j] is recovered with a delay of b T̃+r−1

r c = d T̃r e and the lemma follows.

Example 2. Table IV illustrates an example for source expansion with parameters r = 3, B = 2 and T̃ = 7. A burst erasure of
length B = 2 that erases x[0] and x[1] on the original stream corresponds to rB = 6 erased channel symbols, x̃[0], . . . , x̃[5]
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Source Stream s[0] s[1] s[2] s[3]
Expanded Source Stream s̃[0] s̃[1] s̃[2] s̃[3] s̃[4] s̃[5] s̃[6] s̃[7] s̃[8] s̃[9] s̃[10] s̃[11]

Expanded Channel Stream x̃[0] x̃[1] x̃[2] x̃[3] x̃[4] x̃[5] x̃[6] x̃[7] x̃[8] x̃[9] x̃[10] x̃[11]
Channel Stream x[0] x[1] x[2] x[3]

Expanded Stream Recovery ⇓ ⇓ ⇓
s̃[0] s̃[1] s̃[2]

Original Stream Recovery ⇓
s[0]

TABLE IV
A SOURCE EXPANSION EXAMPLE WITH PARAMETERS (p, 3). EACH SOURCE SYMBOL s[i] IS EXPANDED INTO 3 SYMBOLS s̃[3i], s̃[3i+ 1] AND s̃[3i+ 2]).

A (3B, T̃ ) IS THEN APPLIED TO s̃[·] TO GENERATE x̃[·]. THE CHANNEL SYMBOLS IN THE ORIGINAL STREAM IS DENOTED BY
x[i] = (x̃[3i], x̃[3i+ 1], x̃[3i+ 2]).

on the expanded stream. Hence, the (rB, T̃ ) = (6, 7) MS code is capable of recovering the erased source symbols within
a delay of T̃ = 7. In particular, the source symbols s̃[0], s̃[1] and s̃[2] belonging to s[0] are recovered at time 7, 8 and 9
respectively on the expanded stream. Hence, s[0] is recovered at time 3 on the original stream with is equivalent to a delay
of T = d T̃r e.

Now we can use Definition 3 and Lemma 5 to achieve the capacity Cb in region (b) for the general case when T̃1 in (41)
is not an integer. We start by expanding the source stream s[i] with parameters (p, r) = (nT̃1, n) where n is the smallest
integer such that p = nT̃1 is an integer. We then apply a DE-SCo with parameters {(nB1, nT̃1), (nαB1, n(αT̃1 +B1))} to the
expanded source stream s̃[·]. It can be readily verified that the proposed construction satisfies both the receivers.

APPENDIX C
PROOF OF LEMMA 2

· · ·

b = B2

a = B2 −B1 B1 T1

T2

c = T2 +B2 −B1

(a) T2 > T1 +B1.

· · ·

b = B2

a = B2 −B1 B1 T1

T2

c = B2 + T1

(b) T2 ≤ T1 +B1.
Fig. 13. One period illustration of the Periodic Erasure Channel in Fig. 3 to be used for proving the multicast upper bound provided in Lemma 2.

To establish Lemma 2, we consider the two cases T2 > T1 + B1 and T2 ≤ T1 + B1 separately. When T2 > T1 + B1,
we consider a periodic erasure channel with period length Tp = T2 + B2 − B1. Each period has B2 erasures followed by
T2 − B1 unerased symbols as shown in Fig. 13(a). We start with the first period consisting of the channel symbols x[t] for
t ∈ [0, Tp − 1] and the decoder proceeds as follows,
• For time t = 0, 1, . . . , Tp − 1, the channel behaves similar to burst erasure channel with B2 erasures. Hence, the first
B2−B1 source symbols s[0], . . . , s[B2−B1−1] can be recovered using the (B2, T2) code within a delay of T2 symbols,
i.e., by time T2, . . . , T2+B2−B1−1 = Tp−1, respectively. The corresponding channel symbols x[0], . . . ,x[B2−B1−1]
can then be computed.

• With all the previous channel symbols being recovered, the channel at time t = B2 −B1, . . . , Tp − 1 behaves as a burst
erasure channel with B1 erasures. Hence, the B1 source symbols s[B2 − B1], . . . , s[B2 − 1] can be recovered using the
(B1, T1) code within a delay of T1 symbols, i.e., by time T1 +B2−B1, . . . , T1 +B2−1. We note that the latest recovery
time is T1 +B2 − 1 < Tp − 1 since T2 > T1 +B1.

• It remains to show that the source symbols s[B2], . . . , s[Tp−1] are also recovered. For time t = B2, . . . , Tp+B2−1, the
channel behaves as a burst erasure channel which introduces a burst of length B2 spanning the interval [Tp, Tp +B2− 1].
Hence, the source symbols s[B2], . . . , s[Tp − 1] can be recovered using the (B2, T2) code.

The above steps can be repeated across all periods. Since the length of each period is Tp = T2 + B2 − B1 and contains B2

erasures, any {(B1, T1), (B2, T2)} Mu-SCo with T2 > T1 +B1 must satisfy,

R ≤ T2 −B1

T2 −B1 +B2
(89)
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Fig. 14. Diagonal Embedding of parity checks for the construction in Section VIII. The parity checks p3[·] in layer (4) are generated using a (B3, T3) MS
code to the last B1 − k parity checks of p1[·] in layer 3. The parity checks p3[·] are shifted back by T1 units as discussed before and only the causal part
of these parities are used.

which gives our upper bound on the rate.
For the case with T2 ≤ T1 +B1, a similar argument applies except that the period length is Tp = T1 +B2 with B2 erasures

in each period (see Fig. 13(b)) and the corresponding upper bound is given by,

R ≤ T1
T1 +B2

. (90)

This completes the proof.

APPENDIX D
PROOF OF LEMMA 3

We restate the lemma for convenience of the reader

Lemma. When the erasure burst spans the interval I2 = [i − B2, i − 1], the decoder at receiver 2 can recover all the
overlapping parity sub-symbols of p1j [t] for t ∈ J2 = [i + B1 − k, i + T1 − 1] and j ∈ {k, . . . , B1 − 1} by time t, using
←−p 3
j [t+ T1]

∣∣
t

for t ∈ J1 = [i, i+B1 − k − 1] and the unerased source symbols starting from time i.

First recall that the parity check sub-symbols of C1 that span the interval t ∈ J1 = [i, i − B2 + T2 − 1] are available to
the decoder as they combine p2[t] = s[t − T2] that are not erased. Hence, ←−p 3

j2
[t] for j2 ∈ {0, . . . , B3 − 1} and t ∈ J1 are

recovered at the decoder.
Recall that C3 is a (B3, T3) MS code applied to the last B1 − k parity check sub-symbols of C1 as source sub-symbols.
In our proof, it will be convenient to define the parity-check symbols of C1 that needs to be recovered as:

w[t] = (w0[t], . . . , wT3−1[t]) = (p1k[t], . . . , p1B1−1[t]), t ∈ {i+ T3, . . . , i+ T1 − 1}. (91)

We first consider case (A), i.e., when T1 ≤ 2(B1 − k). Since C3 is a MS code which involves diagonal interleaving of Low
Delay - Burst Erasure Block Codes (LD-BEBC), the diagonals that span the sub-symbols of interest are as follows:

d̄r = (w0[i+ r], . . . , wT3−1[i+ r + T3 − 1], p30[i+ r + T3], . . . , p3B3−1[i+ r + T3 +B3 − 1]),

r ∈ {1, . . . , T3 +B3 − 1}. (92)

Since the parity check sub-symbols of C3 are shifted back by T1 = T3+B3, keeping only their causal part, the corresponding
diagonals of interest are

dr = (w0[i+ r], . . . , wT3−1[i+ r + T3 − 1],←−p 3
0[i+ r + T3]

∣∣
i+r−B3

, . . . ,←−p 3
B3−1[i+ r + T3 +B3 − 1]

∣∣
i+r−1). (93)
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where recall that ←−p j [t1]
∣∣
t2

denotes the causal part of the parity check pj [t1] w.r.t. t2 (cf. Definition 2).
With every parity check sub-symbol projected to a different time instant, one can clearly see that dr is no more a codeword

of an LD-BEBC code.
The following conditions are sufficient to establish Lemma 3.

c1 The diagonals dr in (93) for r ∈ {1, . . . , T3 + B3 − 1} span all the parity-check sub-symbols that need to be recovered,
i.e., p1j [·] for j ∈ {k, . . . , B1 − 1} in the interval J2 = [i+ T2 −B2, i+ T1 − 1].

c2 The decoder can compute the non-causal part of each parity-check p3j [·] in the interval J2 = [i + T2 − B2, i + T1 − 1]
and reduce (93) to (92). Furthermore this step should not violate the zero-delay constraint for any erased symbol on the
diagonal, i.e., the non-causal part of the parity-check sub-symbol p3j1 [tx] required for the recovery of a given parity check
wj2 [ty] should combine source sub-symbols s[.] which are both, not erased and from time earlier than ty .

c3 Each diagonal dr should have no more than B3 erased sub-symbols.
For (c1), we note that the diagonal d1 covers wT3−1[i+ T3] = p1B1−1[i+ T3] which is the lower left most sub-symbol that

needs to be recovered. At r = T3+B3−1, one can see that dr combines w0[i+T3+B3−1] = p1k[i+T3+B3−1] which is the
upper right most sub-symbol that needs to be recovered. Fig. 14 easily illustrates that the diagonal dr for r ∈ [1, T3 +B3− 1]
cover all of the erased sub-symbols in the interval J2.

For (c2), consider the sub-symbols w0[i+ r], . . . , wT3−1[i+ r + T3 − 1] of the diagonal dr. These involve source symbols
s[·] from time i + r − 1 and earlier according to the diagonal interleaving property of C1. Thus, one can conclude that the
non-causal part of any parity-check sub-symbol p3j [i+ r + T3 + j] with respect to i+ r −B3 + j for j ∈ {0, . . . , B3 − 1} in
dr is just a combination of source symbols in the interval [i+ r −B3 + j, i+ r − 1]. Thus the entire non-causal part of each
parity check is available before time i+ r and the reduction to (92) is possible for each dr.

Finally note that the zero delay constraint also requires that the symbols wj [t] with t ≥ i + T1 in dr be made available
before time t = i+ r. Since each wj [t] for t ≥ i+ T1 only consists of combinations of source symbols in [i, i+ r − 1] these
symbols can be explicitly computed by the decoder by time i+ r − 1 and c2 follows.

For (c3), we divide the values of r into three intervals.
• dr for r ∈ {1, . . . , T1 − T3}

In this range, one can see that the following symbols are available,

(w0[i+ r], . . . , wT3−r−1[i+ T3 − 1],←−p 3
B3−r[i+ T3 +B3]

∣∣
i
, . . . ,←−p 3

B3−1[i+ r + T3 +B3 − 1]
∣∣
i+r−1),

which are a total of T3 sub-symbols in the beginning and the end of the diagonals dr which contains T3+B3 sub-symbols.
In other words, each such diagonal has B3 erased sub-symbols happening in a burst.

• dr for r ∈ {T1 − T3 + 1, . . . , T3}
In these diagonals, the following symbols are available,

(w0[i+ r], . . . , wT3−r−1[i+ T3 − 1], wT1−r[i+ T1], . . . , wT3−1[i+ r + T3 − 1],
←−p 3

0[i+ r + T3]
∣∣
i+r−B3

, . . . ,←−p 3
B3−1[i+ r + T3 +B3 − 1]

∣∣
i+r−1),

The first group is a total of T3 − r consecutive sub-symbols, while the other two groups are a total of r consecutive
sub-symbols. This implies that each such diagonal dr has B3 erased sub-symbols in a burst.

• dr for r ∈ {T3 + 1, . . . , T3 +B3 − 1}
The available sub-symbols in these diagonals are,

(wT1−r[i+ T1], . . . , wT3−1[i+ r + T3 − 1],←−p 3
0[i+ r + T3]

∣∣
i+r−B3

, . . . ,←−p 3
T3+B3−r−1[i+ 2T3 +B3 − 1]

∣∣
i+T3−1

),

which are again a total of T3 consecutive sub-symbols which implies that the considered diagonals dr has B3 erased
sub-symbols in a burst and (c3) follows. We note that LD-BEBC codes are capable of recovering wrap-around bursts
which may start at the end of the block and wrap around to the beginning of that block.

This completes the proof when T1 ≤ 2(B1 − k).

A. T1 > 2(B1 − k)

When T1 > 2(B1 − k) note that C3 is a concatenation of r + 1 codes, the first r of which are repetition codes with parity
check sub-symbols given by (60). These parity-check sub-symbols in the interval [i, i+ (B1 − k)− 1] can be used to recover
the causal part of the parity-check sub-symbols (p1k[t1], . . . , p1B1−1[t1]) for t1 ∈ {i+ (B1− k), . . . , i+ (r+ 1)(B1− k)− 1} =
{i+ T2 −B2, . . . , i+ T1 − q− 1}. The non-causal part of these parity-check sub-symbols combine source sub-symbols in the
interval [i, t1 − 1] which are not erased and thus can be recovered.

The remaining q columns of parity-check sub-symbols (p1k[t2], . . . , p1B1−1[t2]) for t2 ∈ {i+ (r + 1)(B1 − k), . . . , i+ (r +
1)(B1−k)+q−1} = {i+T1−q, . . . , i+T1−1} can be recovered using the parity-check sub-symbols of C3,r+1 = (q,B1−k).
This step is similar to that of recovering the T1− (B1− k) columns of parity-check sub-symbols of C1 using C3 = (B3, T3) =
(T1 − (B1 − k), B1 − k) done above, except that B3 = T1 − (B1 − k) is replaced by B3,r+1 = q.
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[i] [i+ 1] [i+ 2] [i+ 3] [i+ 4] [i+ 5]

(1)

s0[i] s0[i+1] s0[i+2] s0[i+3] s0[i+4] s0[i+5]

s1[i] s1[i+1] s1[i+2] s1[i+3] s1[i+4] s1[i+5]

s2[i] s2[i+1] s2[i+2] s2[i+3] s2[i+4] s2[i+5]

s3[i] s3[i+1] s3[i+2] s3[i+3] s3[i+4] s3[i+5]

s4[i] s4[i+1] s4[i+2] s4[i+3] s4[i+4] s4[i+5]

(2) p0[i] p0[i+1] p0[i+2] p0[i+3] p0[i+4] p0[i+5]

(3)
s0[i−10]+p1[i] s0[i−9]+p1[i+1] s0[i−8]+p1[i+2] s0[i−7]+p1[i+3] s0[i−6]+p1[i+4] s0[i−5]+p1[i+5]

s1[i−10]+p2[i] s1[i−9]+p2[i+1] s1[i−8]+p2[i+2] s1[i−7]+p2[i+3] s1[i−6]+p2[i+4] s1[i−5]+p2[i+5]

s2[i−10]+p3[i] s2[i−9]+p3[i+1] s2[i−8]+p3[i+2] s2[i−7]+p3[i+3] s2[i−6]+p3[i+4] s2[i−5]+p3[i+5]

(4)

s3[i−10] s3[i−9] s3[i−8] s3[i−7] s3[i−6] s3[i−5]

+ + + + + +

←−p 1[i+2]+←−p 3[i+4] ←−p 1[i+3]+←−p 3[i+5] ←−p 1[i+4]+←−p 3[i+6] ←−p 1[i+5]+←−p 3[i+7] ←−p 1[i+6]+←−p 3[i+8] ←−p 1[i+7]+←−p 3[i+9]

s4[i−10] s4[i−9] s4[i−8] s4[i−7] s4[i−6] s4[i−5]

+ + + + + +

←−p 2[i+2]+←−p 3[i+3] ←−p 2[i+3]+←−p 3[i+4] ←−p 2[i+4]+←−p 3[i+5] ←−p 2[i+5]+←−p 3[i+6] ←−p 2[i+6]+←−p 3[i+7] ←−p 2[i+7]+←−p 3[i+8]

TABLE V
RATE 5/11 MU-SCO CONSTRUCTION FOR THE POINT, (B1, T1) = (4, 5) AND (B2, T2) = (7, 10) LYING IN REGION (E). THIS POINT IS ALSO

ILLUSTRATING CASE (A) DEFINED BY T1 ≤ 2(B1 − k). FOR THE CAUSAL PART OF PARITY CHECK SUB-SYMBOLS OF C1 SHIFTED BACK TO TIME i− T1 ,
WE USE←−p j [i] INSTEAD OF←−p j [i]

∣∣
i−T1

FOR SIMPLICITY.

APPENDIX E
EXAMPLES OF CODE CONSTRUCTION IN REGION (E)

We give the construction for two specific points in this region, Table V shows the code construction for the point {(4, 5), (7, 10)}
whereas Table VI shows the code construction for the point {(3, 5), (7, 9)}. In both cases k = 1 and m = 1. The former
satisfies T1 < 2(B1 − k) whereas the latter satisfies T1 > 2(B1 − k).

A. Example (1): {(4, 5), (7, 10)}
Using the relations, T2 = T1 +B1 + k and B2 = T1 + k +m, we have that k = m = 1.
The code construction achieving the optimal rate of 5/11 is illustrated in Table V. In this example, we walk through the

steps of both the encoder and the decoder. We note that this point denotes case (A) defined by T1 ≤ 2(B1 − k) in the general
code construction given in Section VIII.
• Encoder

– Each source symbol is divided into T1 = 5 sub-symbols (s0[.], . . . , s4[.]). A C1 = (4, 5) is applied along the diagonal
of such source sub-symbols producing B1 = 4 parity check sub-symbols (p0[.], . . . , p3[.]) defined as follows,

p0[i] = s0[i− 5] + s4[i− 1]

p1[i] = s1[i− 5] + s4[i− 2]

p2[i] = s2[i− 5] + s4[i− 3]

p3[i] = s3[i− 5] + s4[i− 4] (94)

– The T1 = 5 parity check symbols of code C2 = (10, 10) which are repetitions of the source sub-symbols such that
p2j [i] = sj [i− 10] for j ∈ {0, . . . , 4} are concatenated to the parity checks of C1 with partial overlap of B1 − k = 3
rows as shown in Table V.

– A C3 = (T1− (B1−k), B1−k) = (2, 3) MS code is applied to the last B1−k = 3 rows of parity check sub-symbols
of C1, (p1[.], p2[.], p3[.]) producing T1 − (B1 − k) = 2 parity check sub-symbols, (p30[.], p31[.]). The produced parity
checks is shifted back by T1 = 5 and combined with the last two rows of parity check sub-symbols of C2.

We note that applying a shift back of T1 = 5 on the parity check sub-symbols of C3 explains why p30[i] = p1[i+2]+p3[i+4]
appears at time i and not i + 5. Moreover, since p1[i + 2] + p3[i + 4] in general combines source sub-symbols at time
i+ 3 and earlier, they cannot appear at time i as this violates the causality of the code construction. Thus, the causal part
of such parity checks shifted to any time instant t (denoted by ←−p j [.]

∣∣
t
) is to be sent instead. For example, the first parity

check sub-symbol of C3 at time i is p30[i+ 5] = p1[i+ 2] + p3[i+ 4] = s1[i− 3] + s4[i+ 1] + s3[i− 1] + s4[i]. The causal
part of this parity check is sent instead, i.e., ←−p 3

0[i+ 5]
∣∣
i

=←−p 1[i+ 2]
∣∣
i
+←−p 3[i+ 4]

∣∣
i

= s1[i− 3] + s3[i− 1] + s4[i].
According to Fig. 4, we divide each channel symbol into four layers,

– Layer (1) contains the first five rows which are the source sub-symbols.
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– Layer (2) contains the next row.
– Layer (3) contains the next three rows where the overlap between the parity checks of codes C1 and C2 takes place.
– Layer (4) contains the last two rows. The overlap between the parity checks of codes C2 and C3 takes place.

• Decoder
With a burst erasure of length B1 = 4 taking place at times [i − 4, i − 1], the decoder at user 1 simply uses the
first four rows of parity checks at times [i, i + 4] after subtracting the unerased source sub-symbols s0[t], s1[t], s2[t] for
t ∈ {i − 10, . . . , i − 6}. For user 2, we assume a burst erasure of length B2 = 7 at times [i − 7, i − 1]. The decoding
steps are as follows.

– Step (1): Recover pj [i+ 3] and pj [i+ 4] for j = {1, 2, 3}.
(a) In layer (3), spanning the second, third and fourth rows of parity checks, one can see that the parity check sub-

symbols of C2 in the interval [i, i+ 2] are unerased source sub-symbols. Thus, the corresponding combined parity
check sub-symbols of C1 can be computed in this interval.

(b) In the same layer but in the interval [i + 5,∞), the parity check sub-symbols of C1 are of indices i + 5 and
later. Using the fact that (B1, T1) MS code has a memory of T1 symbols, it can be easily shown that these parity
check sub-symbols combine only source sub-symbols of time i and later which are not erased and thus can be
computed as well (cf. (94)).

(c) Steps (a) and (b) show that all the parity check sub-symbols of C1 in layer (3) can be computed except for the
interval [i+ 3, i+ 4].

(d) The parity check sub-symbols of C2 in layer (4) spanning the last two rows of parity check sub-symbols in the
interval [i, i+ 2] are again unerased source sub-symbols and thus can be cancelled and the corresponding parity
check sub-symbols of C3 can be computed in this interval.

(e) The parity-check sub-symbols of C3 in the interval [i, i+ 2],(
p30[i+ 5] p30[i+ 6] p30[i+ 7]
p31[i+ 5] p31[i+ 6] p31[i+ 7]

)
, (95)

can recover the remaining two columns of parity-check sub-symbols of C1 in the interval [i + 3, i + 4] lying in
layer (3),  p1[i+ 3] p1[i+ 4]

p2[i+ 3] p2[i+ 4]
p3[i+ 3] p3[i+ 4]

 ,

since C3 is a (2, 3) MS code whose parity-check sub-symbols are shifted back by T1 = 5.
However, only the causal part of the parity checks of C3 are available. Thus, the non-causal part is to be computed
and added to the causal-part to recover the original parity checks of the MS code. Using (94), it can be seen that
the recovery of the non-causal part does not require the availability of source sub-symbols after time4 i+ 3. For
example, the non-causal part of p30[i+ 5] is −→p 3

0[i+ 5]
∣∣
i

= s4[i+ 1] which is clearly available before time i+ 3.
Thus the non-causal portions of all the parity checks are computed and then (95) is applied.

– Step (2): After recovering these parity check sub-symbols, the decoder can cancel their effect in the second, third
and fourth rows of parity checks (layer (3)) at times i+ 3 and i+ 4.

– Step (3): Furthermore, one can see that the parity check sub-symbols of C3 interfering in the last two rows (layer
(4)) starting at time i+ 3 combine parity check sub-symbols of C1 of indices i+ 5 and later which was shown before
to combine unerased source sub-symbols (cf. (94)).

According to Step (2) and (3), the parity checks of C2 = (10, 10) repetition code in layers (3) and (4) are now free
of any interference from i + 3 and later. Thus, the decoder of user 2 is capable of recovering the erased source
sub-symbols in the interval [i− 7, i− 1].

B. Example (2): {(3, 5), (7, 9)} ⇒ k = 1,m = 1

Again the capacity equals 5/11. The code construction achieving such rate is illustrated in Table VI. The reason we give the
detailed encoding and decoding steps for one more example is to show the main differences between case (A): T1 ≤ 2(B1−k)
illustrated by the previous example {(4, 5), (7, 10)} and case (B): T1 > 2(B1 − k) illustrated by this example, {(3, 5), (7, 9)}.
• Encoder

– Each source symbol is divided into T1 = 5 sub-symbols (s0[.], . . . , s4[.]) (layer (1)). A C1 = (3, 5) is applied along
the diagonal of such source sub-symbols producing B1 = 3 parity check sub-symbols (p0[.], p1[.], p2[.]) defined as

4A proof of this in the general case is provided in the proof of Lemma 3 in Appendix D.
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[i] [i+ 1] [i+ 2] [i+ 3] [i+ 4] [i+ 5]

(1)

s0[i] s0[i+1] s0[i+2] s0[i+3] s0[i+4] s0[i+5]

s1[i] s1[i+1] s1[i+2] s1[i+3] s1[i+4] s1[i+5]

s2[i] s2[i+1] s2[i+2] s2[i+3] s2[i+4] s2[i+5]

s3[i] s3[i+1] s3[i+2] s3[i+3] s3[i+4] s3[i+5]

s4[i] s4[i+1] s4[i+2] s4[i+3] s4[i+4] s4[i+5]

(2) p0[i] p0[i+1] p0[i+2] p0[i+3] p0[i+4] p0[i+5]

(3) s0[i−9]+p1[i] s0[i−8]+p1[i+1] s0[i−7]+p1[i+2] s0[i−6]+p1[i+3] s0[i−5]+p1[i+4] s0[i−4]+p1[i+5]

s1[i−9]+p2[i] s1[i−8]+p2[i+1] s1[i−7]+p2[i+2] s1[i−6]+p2[i+3] s1[i−5]+p2[i+4] s1[i−4]+p2[i+5]

(4)

s2[i−9]+←−p 1[i+2] s2[i−8]+←−p 1[i+3] s2[i−7]+←−p 1[i+4] s2[i−6]+←−p 1[i+5] s2[i−5]+←−p 1[i+6] s2[i−4]+←−p 1[i+7]

s3[i−9]+←−p 2[i+2] s3[i−8]+←−p 2[i+3] s3[i−7]+←−p 2[i+4] s3[i−6]+←−p 2[i+5] s3[i−5]+←−p 2[i+6] s3[i−4]+←−p 2[i+7]

s4[i−9] s4[i−8] s4[i−7] s4[i−6] s4[i−5] s4[i−4]

+ + + + + +

←−p 1[i+3]+←−p 2[i+4] ←−p 1[i+4]+←−p 2[i+5] ←−p 1[i+5]+←−p 2[i+6] ←−p 1[i+6]+←−p 2[i+7] ←−p 1[i+7]+←−p 2[i+8] ←−p 1[i+8]+←−p 2[i+9]

TABLE VI
RATE 5/11 MU-SCO CONSTRUCTION FOR THE POINT, (B1, T1) = (3, 5) AND (B2, T2) = (7, 9) LYING IN REGION (E). THIS POINT IS ALSO

ILLUSTRATING CASE (B) DEFINED BY T1 > 2(B1 − k). FOR THE CAUSAL PART OF PARITY CHECK SUB-SYMBOLS OF C1 SHIFTED BACK TO TIME i− T1 ,
WE USE←−p j [i] INSTEAD OF←−p j [i]

∣∣
i−T1

FOR SIMPLICITY.

follows,

p0[i] = s0[i− 5] + s3[i− 2]

p1[i] = s1[i− 5] + s4[i− 2]

p2[i] = s2[i− 5] + s3[i− 4] + s4[i− 3]. (96)

– Then, the T1 = 5 parity check symbols of code C2 = (9, 9) which are repetitions of the corresponding source
sub-symbols are concatenated to the parity checks of C1 with partial overlap of B1 − k = 2 rows as shown in
Table VI.

– Since T1 = 5 > 4 = 2(B1 − k), this point falls in case (B), one can write T1 − (B1 − k) = r(B1 − k) + q as
3 = 1(2) + 1, i.e., r = 1 and q = 1. Thus, r + 1 = 2 MS codes are to be constructed. The first is a repetition code
of parameters C3,1 = (B1 − k,B1 − k) = (2, 2) is applied on the last B1 − k = 2 rows of parity check sub-symbols
of C1, (p1[.], p2[.]) producing (B1 − k) = 2 parity check sub-symbols, (p30[·], p31[·]) which are then shifted back by
2(B1−k) = 4 symbols, while the second is a C3,2 = (q,B1−k) = (1, 2) MS code applied again on the last two rows
of parity check sub-symbols of C1 diagonally producing one row of parity check sub-symbols, p32[·] which is shifted
back by T1 = 5 symbols. The parity check sub-symbols of C3,1 and C3,2 (denoted by C3) are then concatenated
forming T1 − (B1 − k) = 3 rows of parity check sub-symbols and then combined with the last three rows of parity
check sub-symbols of C2 (layer (4)).

The same causality argument stated in the previous example applies and the causal parts of the corresponding parity check
sub-symbols shifted to any time instant t denoted by ←−p j [.]

∣∣
t

are sent instead (cf. Table VI).
Similar to the previous example, we divide each channel symbol into four layers (cf. Fig. 4),

– Layer (1) contains the first five rows which are the source sub-symbols.
– Layer (2) contains the next row.
– Layer (3) contains the next two rows where overlap between the parity checks of codes C1 and C2 takes place.
– Layer (4) contains the last three rows. The overlap between the parity checks of codes C2 and C3 takes place.

• Decoding:
For user 1, the decoding is similar to the previous example. We assume a burst erasure of length B1 = 3 taking place at
times [i− 3, i− 1]. One can recover the parity checks of code C1 in the first three rows of parity checks at times [i, i+ 4]
after subtracting the unerased combined source sub-symbols s0[t], s1[t], s2[t] for t ∈ {i − 9, . . . , i − 5}. For user 2, we
assume a burst erasure of length B2 = 7 in the interval [i− 7, i− 1]. The decoding steps are as follows.

– Step (1): Recover pj [i+ 2], pj [i+ 3] and pj [i+ 4] for j = {1, 2}.
(a) In layer (3), spanning the second and third rows of parity checks, one can see that the parity check sub-symbols

of C2 in the interval [i, i+ 1] are unerased source sub-symbols. Thus, the overlapping parity check sub-symbols
of C1 can be computed in this interval.

(b) In the same layer but in the interval [i + 5,∞), the parity check sub-symbols of C1 are of indices i + 5 and
later. Using the fact that (B1, T1) MS code has a memory of T1 symbols, it can be easily shown that these parity
check sub-symbols combine only source sub-symbols of time i and later which are not erased and thus can be
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computed as well (cf. (96)).
(c) In steps (a) and (b), we show that all the parity check sub-symbols of C1 in layer (3) can be computed except for

the interval [i + 2, i + 4]. Let us mark the uncomputed parity check sub-symbols as erased source sub-symbols
with two rows and three columns.

(d) Moreover, the parity check sub-symbols of C2 in layer (4) spanning the last three rows of parity check sub-symbols
in the interval [i, i+ 1] are again unerased source sub-symbols and thus can be cancelled and the corresponding
parity check sub-symbols of C3 can be computed in this interval.

(e) C3 is a concatenation of C3,1 = (2, 2) repetition code producing two parity-check sub-symbols (p30[.], p31[.]) and a
C3,2 = (1, 2) MS code producing a single parity-check sub-symbol p32[.]. At time i and i + 1, the parity checks
of C3,1, ( ←−p 3

0[i]
∣∣
i←−p 3

1[i]
∣∣
i

)
=

( ←−p 1[i+ 2]
∣∣
i←−p 2[i+ 2]
∣∣
i

)
,

thus, ←−p 1[i + 2]
∣∣
i

and ←−p 2[i + 2]
∣∣
i

can be directly recovered, while their corresponding non-causal parts can be
computed before time i + 2. Similarly, ←−p 1[i + 3]

∣∣
i

and ←−p 2[i + 3]
∣∣
i

can be recovered at time i + 1 and their
corresponding non-causal parts can be retrieved before i+ 3. The remaining column, (←−p 1[i+ 4]

∣∣
i
,←−p 2[i+ 4]

∣∣
i
)

can be recovered using the parity checks of C3,2 = (1, 2) MS code at time i and i + 1, p32[i] and p32[i + 1] in a
similar way used in the previous example.

– Step (2): After recovering these parity check sub-symbols of C1, the decoder can cancel their effect in the second
and third rows of parity checks (layer (3)) at times i+ 2, i+ 3 and i+ 4.

– Step (3): Remove interference in layer (4) starting at time i+ 2.
The parity check sub-symbols of C3 interfering in the last two rows (layer (4)) starting at time i+2 are of indices i+4
and later which are either recovered in Step (1) or can be calculated as they combine unerased source sub-symbols
(cf. (96)).
According to Step (2) and (3), the parity checks of C2 in layers (3) and (4) are now free of any interference starting
at time i + 2 and thus, the decoder of user 2 can use the parity-checks in layer (3) and (4) to recover the erased
source symbols, s[i− 7], . . . , s[i− 1].

APPENDIX F
PROOF OF LEMMA 4

Using the first decoder with a (B1, T1) property, we can write the following relation,

H
(
s[i− T1]

∣∣∣x[ i
i−T1+B1

]
,x
[
i−T1−1

0

])
= 0, (97)

which follows from (83) by substituting j = i− T1 and r1 = 0. Also, using the (B2, B2) decoder, we can write,

H
(
s[i−B2]

∣∣∣x[i],x
[
i−B2−1

0

])
= 0 (98)

which again follows from (83) but with j = i−B2 and r1 = 0. This can be used in the following steps

H(x[i]) ≥ H
(
x[i]
∣∣∣x[ i−B2−1

0

])
= H

(
s[i−B2],x[i]

∣∣∣x[ i−B2−1
0

])
−H

(
s[i−B2]

∣∣∣x[i],x
[
i−B2−1

0

])
= H

(
s[i−B2],x[i]

∣∣∣x[ i−B2−1
0

])
= H(s[i−B2]) +H

(
x[i]
∣∣∣s[i−B2],x

[
i−B2−1

0

])
. (99)

We use mathematical induction to prove (76). For the base case, (76) at m = 2B2 −B1 − 1 is already proved by the result
in (75).

For the inductive step, we assume that (76) is true for m = j, i.e.,
j∑

i=B2

H(x[i]) ≥ H
(
s
[
j−B2

0

])
+H

(
s
[
j−T1

B2−B1

])
+H

(
x
[
j
B2

]∣∣∣s[ j−B2

0

]
, s
[
j−T1

B2−B1

]
,x
[
j−B2

0

])
. (100)

We then add H(x[j+ 1]) to both sides, and use (97) and (98) to recover the source symbols s[j+ 1−B2] and s[j+ 1−T1]
respectively as follows,

j+1∑
i=B2

H(x[i])
(a)

≥ H
(
s
[
j−B2

0

])
+H

(
s
[
j−T1

B2−B1

])
+H

(
x
[
j
B2

]∣∣∣s[ j−B2

0

]
, s
[
j−T1

B2−B1

]
,x
[
j−B2

0

])
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+H(s[j + 1−B2]) +H
(
x[j + 1]

∣∣∣s[j + 1−B2],x
[
j+1−B2

0

])
≥ H

(
s
[
j+1−B2

0

])
+H

(
s
[
j−T1

B2−B1

])
+H

(
x
[
j+1
B2

]∣∣∣s[ j+1−B2

0

]
, s
[
j−T1

B2−B1

]
,x
[
j+1−B2

0

])
= H

(
s
[
j+1−B2

0

])
+H

(
s
[
j−T1

B2−B1

])
+H

(
s[j + 1− T1],x

[
j+1
B2

]∣∣∣s[ j+1−B2

0

]
, s
[
j−T1

B2−B1

]
,x
[
j+1−B2

0

])
−H

(
s[j + 1− T1]

∣∣∣s[ j+1−B2

0

]
, s
[
j−T1

B2−B1

]
,x
[
j+1
B2

]
,x
[
j+1−B2

0

])
(b)
= H

(
s
[
j+1−B2

0

])
+H

(
s
[
j−T1

B2−B1

])
+H

(
s[j + 1− T1],x

[
j+1
B2

]∣∣∣s[ j+1−B2

0

]
, s
[
j−T1

B2−B1

]
,x
[
j+1−B2

0

])
= H

(
s
[
j+1−B2

0

])
+H

(
s
[
j−T1

B2−B1

])
+H

(
s[j + 1− T1]

∣∣∣s[ j+1−B2

0

]
, s
[
j−T1

B2−B1

]
,x
[
j+1−B2

0

])
+H

(
x
[
j+1
B2

]∣∣∣s[ j+1−B2

0

]
, s
[
j+1−T1

B2−B1

]
,x
[
j+1−B2

0

])
(c)
= H

(
s
[
j+1−B2

0

])
+H

(
s
[
j+1−T1

B2−B1

])
+H

(
x
[
j+1
B2

]∣∣∣s[ j+1−B2

0

]
, s
[
j+1−T1

B2−B1

]
,x
[
j+1−B2

0

])
(101)

Step (a) is the addition of (99) and (76), step (b) uses the fact that j ≥ 2B2 − B1 − 1 and thus B2 − B1 ≤ j + 1− B2 and
thus:

H
(
s[j + 1− T1]

∣∣∣s[ j+1−B2

0

]
, s
[
j−T1

B2−B1

]
,x
[
j+1
B2

]
,x
[
j+1−B2

0

])
= H

(
s[j + 1− T1]

∣∣∣x[ j+1
B2

]
,x
[
j−T1

0

])
= 0

which follows using (97), and step (c) uses the fact that the source symbols are independent of each other together with the fact
that s[j+ 1−T1] /∈ s

[
j+1−B2

0

]
since B2 > T1 is satisfied throughout region (f). The result is in the form (76) for m = j+ 1.
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