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Abstract—We study secret-key agreement over a non-coherent
block-fading multiple input multiple output (MIMO) wiretap
channel. We give an achievable scheme based on training and
source emulation and analyze the rate in the high SNR regime.
Based on this analysis we find the optimal number of antennas to
use for training. Our main result is that if the sum of the number
of antennas at Alice and Bob is larger than the coherence time of
the channel, the achievable rate does not depend on the number
of antennas at Eve. In this case source emulation is not needed,
and using only training is optimal. We also consider the case
when there is no public channel available. In this case we show
that secret-key agreement is still possible by using the wireless
channel for discussion, giving the same number of secure degrees
of freedom as in the case with a public channel.

I. INTRODUCTION
Information theoretic security was first studied in [1], and

since then there has been a large interest in studying security
from this perspective [2]–[4]. We consider secret-key agree-
ment over a non-coherent block-fading MIMO channel. The
goal in secret-key agreement is for two legitimate parties Alice
and Bob to agree on a key K , which is to be kept secret
from an adversary Eve [5], [6]. Secret-key agreement over
fading channels has been extensively studied [7]–[14]. In [12]
the secret-key capacity for the coherent fast fading MIMO
wiretap channel was found. The non-coherent fast fading case
was studied in [15]. [13] is closest to our work and considers
secret-key agreement for non-coherent slow fading single
antenna channels using a two-phase scheme with training
and secret message transmission. In the first phase Alice and
Bob transmit known training signals to each other. Assuming
channel reciprocity, they in this way obtain an estimate of the
channel gain. In the second phase Alice uses a wiretap channel
code and transmits a random codeword to Bob. The achievable
secret-key rate in the first phase scales with the power P as
(logP )/T , where T is the coherence time of the channel,
while the achievable rate from the second phase is bounded.
We consider a similar multi-phase scheme with training, but
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instead of secret message transmission, we suggest source
emulation in the last phase, where Alice transmits random
sequences instead of a codeword from a wiretap channel code.

II. CHANNEL MODEL

We consider the channel type model from [5] with a
wiretapper. Alice and Bob communicate over a two way block-
fading (MIMO) channel. In addition they can also use a
public discussion channel with unlimited capacity. We pose
the constraint that a node cannot transmit and receive at the
same time. We assume that Alice, Bob, and Eve have nA, nB ,
and nE antennas, respectively, with nA ≥ nB without loss of
generality. If Alice uses the channel, the received signals at
Bob and Eve at time t are given by

YB(t) = H(t)XA(t) +VB(t),

YE(t) = GA(t)XA(t) +VE(t),

and if Bob uses the channel, the received signals at Alice and
Eve are given by

YA(t) = H
†(t)XB(t) +VA(t),

YE(t) = GB(t)XB(t) +VE(t).

Here XA(t) ∈ CnA , or XB(t) ∈ CnB is the transmitted
signal, YA(t) ∈ CnA , YB(t) ∈ CnB , and YE(t) ∈ CnE are
Alice’s, Bob’s, and Eve’s received signals, respectively. H(t)
represents the channel matrix between Alice and Bob, and
GA(t) andGB(t) are the channel matrices between Alice and
Eve, and Bob and Eve, respectively. The noise termsVA(t) ∼
CN (0, InA

),VB(t) ∼ CN (0, InB
), andVE(t) ∼ CN (0, InE

)
are i.i.d. and independent of each other and all other variables.
We assume that the entries of H(t), GA(t), and GB(t) are
distributed as CN (0, 1), independent of each other, and stay
fixed for T channel uses, but are independent between different
fading blocks. We further assume a short-term average power
constraint on the input symbols

E[XA
†(t)XA(t)] ≤ P, E[XB

†(t)XB(t)] ≤ P. (1)



Denote the message sent over the public channel by Alice
at time k by Φk and the message sent by Bob at time k
by Ψk. We consider key agreement over several coherence
blocks N , and denote the symbols transmitted and received
by Alice and Bob in these N blocks by (XN

A
,YN

A
) and

(XN
B
,YN

B
), respectively. The message transmitted over the

public channel at time k can depend on previous observed
symbols: Φk = Φk(X

k−1

A
,Yk−1

A
,Ψk−1,Φk−1), and Ψk =

Ψk(X
k−1

B
,Yk−1

B
,Ψk−1,Φk−1). After N coherence blocks,

and K uses of the public channel Alice generates a key
KA = K1(XK

A
,YK

A
,ΨK ,ΦK) ∈ K, and Bob generates a

key KB = KB(XK
A
,YK

A
,ΨK ,ΦK) ∈ K. A key rate R is

achievable if for every ε > 0, and large enough N , there
exists a secret-sharing strategy of this form such that

Pr(KA %= KB) < ε
1

N
I(ZN ,ΦK ,ΨK ;K) < ε

1

N
H(K) > R− ε

1

N
log |K| < 1

N
H(K) + ε.

The supremum of all achievable key rates is called the secret-
key capacity.

III. ACHIEVABLE SCHEME

We consider a three-phase scheme based on transmitting
known training symbols between Alice and Bob in the first
two phases, and source emulation in the third phase. By source
emulation we mean that Alice generates random symbols XA

and transmits them over the channel. Bob then quantizes his
observations from the training phase and the source emulation
phase, and sends enough information over the public channel
in order for Alice and Bob to agree on a secret key K .
In phase one Alice transmits known training symbols be-

tween time 1 and MA < nA. Alice’s transmitted symbols at
antenna j at time t are given by

XA,j(t) = δt,j
√
P ,

where

δi,j =

{

1 if i = j,

0 otherwise.

In phase two Bob transmits known training symbols between
timeMA+1 andMA+MB, withMB < nB . Bob’s transmitted
symbols at antenna j at time t are given by

XB,j(t) = δ(t−MA),j

√
P .

As in [16], Alice and Bob can estimate parts of H from their
received signals during the training phases using component-
wise minimum mean square error (MMSE) estimation. Let

H =

[

H1 H2

H3 H4

]

,

where H1 ∈ CMB×MA , H2 ∈ CMB×(nA−MA), H3 ∈
C(nB−MB)×MA , and H4 ∈ C(nB−MB)×(nA−MA). Bob’s re-
ceived signal at time j at antenna i is

yB,i(j) = Hi,j

√
P + vB,i(j). (2)

The MMSE estimate ĤB,i,j of Hi,j is a circularly symmetric
Gaussian random variable with variance P/(P + 1) given by

ĤB,i,j =

√
P

P + 1
yB,i(j). (3)

The estimation error eB,i,j = Hi,j − ĤB,i,j is distributed
as CN (0, 1/(P + 1)). The estimation errors eB,i,j and the
estimates ĤB,i,j are all independent of each other. In this
way Bob obtains an MMSE estimate ĤB =

[

ĤT
B,1 ĤT

B,3

]T

of
[

H1
T
H3

T
]T

, and in the same way Alice can form an

MMSE estimate ĤA =
[

ĤA,1ĤA,2

]

of [HA,1HA,2] from
her observations in the second phase. Eve can also estimate
the channel matrix GA from Alice’s transmission in the first
phase. We assume that Eve’s estimate of GA is perfect, since
this gives a lower bound on the achievable secret-key rate.
In phase three Alice uses the first MA antennas to transmit

i.i.d. vectors XA(t) ∼ CN (0, P/MAIMA
), between time

MA +MB + 1 and T . To simplify the notation we will refer
to these transmitted signals {XA(t)}Tt=MA+MB+1 simply as
XA, and to the received signals at Bob and Eve in the third
phase as YB and YE, respectively. We choose XA to be
independent of Alice’s estimate ĤA in order to simplify the
analysis of the achievable rate. We have the following result:

Theorem III.1. The rate achieved by the described training
based scheme is bounded from below by

MAMB

T
log

(

1 +
P 2

2P + 1

)

+
T −MA −MB

T
RSE ,

where RSE is given by

E



log
det

(

IMA
+ P/MAGA

†
GA + P/MAH

†H

)

det
(

IMA
+ P/MAGA

†
GA

)



+

−MB log σ̃2
A,B − (nB −MB) log(σ̃

2
B),

with σ̃2
A,B = P

MA(2P+1) + 1, and σ̃2
B = P

MA(P+1) + 1.

Proof: The random variables involved in our scheme
satisfy the following Markov chain:

(YE,GA) ↔ (XA, ĤA) ↔ (YB,H) ↔ (YB, ĤB). (4)

If we consider our scheme as a Source-Type Model with
Wiretapper, and code over a large number of coherence blocks,
the achievable secret-key rate is bounded from below by [5,
Theorem 1]:

R− =
1

T
(XA, ĤA;YB, ĤB|YE,GA).

This rate is achieved by quantizing Bob’s observations
(YB, ĤB) into a quantization codebook generated by auxil-
iary random variables (UY,UH) and using Wyner-Ziv coding



to transmit the indices over the public channel. By making the
quantization fine enough we can achieve the rate R−.
We can bound this rate from below using (4) as follows:

TR− =I(XA, ĤA;YB, ĤB|YE,GA)

=I(XA, ĤA;YB, ĤB)− I(YB, ĤB;YE,GA)

≥I(XA, ĤA;YB, ĤB)− I(YB,H;YE,GA)

≥I(ĤA; ĤB) + I(XA;YB|ĤA, ĤB)

− I(YB;YE|H,GA)

=I(ĤA; ĤB) + h(YB|ĤA, ĤB)− h(YB|H,GA)

− h(YB|ĤA, ĤB,XA) + h(YB|H,GAYE)

≥I(ĤA; ĤB)− h(YB|ĤA, ĤB,XA)

+ h(YB|H,GAYE), (5)

where we have used that XA and ĤA are independent in
the second inequality. We see that we have two contributions
to the secret-key rate. I(ĤA; ĤB) comes from the training
phases, and h(YB|H,GAYE)− h(YB|ĤA, ĤB,XA) is the
rate from the source emulation phase.
To calculate the first contribution, we note that H1 is the

only part of H for which both Alice and Bob have estimates.
Using (2) and (3), we get

I(ĤA; ĤB) = MAMBI(YA,i(j);YB,i(j))

= MAMB log

(

1 +
P 2

2P + 1

)

. (6)

We now bound the contribution h(YB|H,GAYE) −
h(YB|ĤA, ĤB,XA) from the source emulation phase from
below using the following Lemma from [12]:

Lemma III.2. LetU andV be two jointly distributed complex
random vectors of dimensions mU and mV, respectively. Let
KU, KV, and KUV be the covariance of U, covariance of
V and cross-covariance of U and V, respectively. If KV is
invertible, then

h(U|V) ≤ log det
(

KU −KUVK
−1
V

KVU

)

+mU log(πe),

with equality if [UT VT ]T is a circularly symmetric complex
Gaussian random vector.

We first create a new MMSE estimate Ĥ of H using both
ĤA and ĤB. Note that since only the firstMA entries of XA

are nonzero, we only need an estimate of
[

HT
1 HT

3

]T . If Bob
assumes that Ĥ is the true value of H, his received signal is

YB(t) =ĤXA(t) + EXA(t) +VB(t),

where E =
[

ET
1 ET

3

]T
=

[

HT
1 − ĤT

1 HT
3 − ĤT

3

]T

.
The estimate ofH1 is based on ĤA and ĤB and the entries

have MSE 1/(2P + 1), while the estimate of H3 is based
only on ĤB and the entries have MSE 1/(P + 1). Thus the
covariance of EXA(t) +VB(t) is

[

σ̃2
A,BIMB

0
0 σ̃2

BInB−MB

]

,

where

σ̃2
A,B =

P

MA(2P + 1)
+ 1, (7)

σ̃2
B =

P

MA(P + 1)
+ 1. (8)

We now bound h(YB|ĤA, ĤB,XA) from above as follows:

h(YB|ĤA, ĤB,XA) ≤

E
Ĥ

[

log det(K
Y|Ĥ −K

YX|ĤK−1
X|Ĥ

K
XY|Ĥ)

]

+

nB log(πe)

= log detKEXA(t)+VB(t) + nB log(πe)

= MB log(πeσ̃2
A,B) + (nB −MB) log(πeσ̃

2
B) (9)

where we have used Lemma III.2 in the first inequality.
h(YB|H,GAYE) is given by [12] as

E



log
det

(

IMA
+ P/MAGA

†
GA + P/MAH

†H

)

det
(

IMA
+ P/MAGA

†
GA

)





+ nB log(πe). (10)

Combining (5) - (10) gives the desired result.

A. High SNR Regime
In [12] the secret-key capacity CK(P ) for the fast fading

coherent MIMO wiretap channel with MA transmit antennas
was calculated and found to be

E



log
det

(

IMA
+ P/MAGA

†
GA + P/MAH

†H

)

det
(

InA
+ P/MAGA

†
GA

)



 .

Note that RSE differs from CK(P ) only by the negative terms
MB log(σ̃2

A,B)+(nB −MB) log(σ̃2
B), due to not knowing the

channel perfectly at Bob. From (7) and (8), we see that these
terms scale with P as Θ(1). Further, from [12, Corollary 1],
if MA > nE , we have that limP→∞ CK(P )/C∞(P ) = 1,
where C∞(P ) is defined as

E

[

log det(InB
+

P

MA
H

[

IMA
−GA

†(GAGA
†)−1

GA

]

H
†)

]

,

and if MA ≤ nE , CK(P ) scales with P as Θ(1). As in [12],
we can interpret IMA

−GA
†(GAGA

†)−1GA as a projection
matrix onto the null space of GA. Thus, at high SNR, the
number of secure degrees of freedom per channel use (s.d.o.f.)
from the third phase is given by min(MA − nE , nB)(T −
MA −MB)/T . Further, from (6) we see that the number of
s.d.o.f. per channel use from the first two phases is given by
MAMB/T . Combining these results we get:

Theorem III.3. The number of s.d.o.f. per channel use at high
SNR is given by

[min(MA − nE , nB)]
+ (T −MA −MB) +MAMB

T
. (11)



Proof: See above.
We can use Theorem III.3 to find the optimalMA and MB.

Corollary III.4. The optimal number of time slots M!
A and

M!
B to use for training in the high SNR regime is given by

M!
A = min(nA,max(T/2, T − nB)),

M!
B = min(T −M!

A, nB).

Proof: See Appendix.

Remark 1. We note two facts from Corollary III.4. First, M!
A

andM!
B do not depend on nE , and second, it is either optimal

to train all antennas (if nA+nB < T ), or to only use training
and no source emulation (if nA +nB ≥ T ). In the latter case
the number of s.d.o.f. does not depend on nE .

We can also use Corollary III.4 to find the optimal number
of antennas nA and nB for a given coherence time T .

Corollary III.5. Increasing the number of transmit and re-
ceive antennas over

n!
A = n!

B = T/2

does not increase the degrees of freedom.

Proof: For given T and nB the optimal choice of nA is
n!
A = max(T/2, T − nB). Thus the optimal choice of nB is

M!
B = min(nB , T −max(T/2, T − nB)) = min(T/2, nB).

Thus n!
B = T/2, which gives n!

A = T/2.
With this choice of nA and nB there is only training, and

we can guarantee a secret key rate of

R− =
T

4
log

(

1 +
P 2

2P + 1

)

,

regardless of the number of antennas nE at Eve.

IV. KEY AGREEMENT WITHOUT A PUBLIC CHANNEL

The presence of a public channel with unlimited rate is
unrealistic. Therefore we consider a scenario in which some
coherence blocks are used for public discussion between Alice
and Bob over the wireless channel. In the high SNR regime
this does not give a loss of s.d.o.f. We have the following
result:

Theorem IV.1. At high SNR it is possible to achieve

[min(MA − nE , nB)]
+ (T −MA −MB) +MAMB

T
s.d.o.f. per channel use without using a public channel, if MA

and MB are chosen as in Corollary III.4.

Proof: Let YAT and YBT denote Alice’s and Bob’s
observations in the training phase. As before, we quantize
Bob’s observation (YB,YBT) into a codebook generated by
the auxiliary random variables (UY,UH). From [17], the rate
needed for public discussion and the achievable secret-key rate
are given by

Rp = I(YB,YBT;UY,UH)− I(XA,YAT;UY,UH),

and
Rnp

− = I(XA,YAT;UY,UH|YE,GA), (12)
respectively. As in [13], we let UY = YB + WY and
UH = YB + WH, where WY ∼ CN (0, σ2

Y IMB
) and

WH ∼ CN (0, σ2
HIMB

) are i.i.d. and independent of all other
random variables. Note that with the optimal choice of MA

and MB above, either MB = nB , or all time slots are used
for training. In the latter case the measurements at the last
nB −MB antennas at Bob cannot be used for key agreement,
so only the first MB measurements are used. We first analyze
the rate needed for public discussion. We have

Rp =I(YB,YBT;UY,UH)− I(XA,YAT;UY,UH)

=I(YB,YBT;UH) + I(YB,YBT;UY|UH)+

− I(XA,YAT;UH)− I(XA,YAT;UY|UH)

=I(YBT;UH)− I(YAT;UH)+

h(UY|YAT,UH,XA)− h(UY|YB,YAT,UH).

The first term is given by I(YBT;UH) = MAMB log(1+
P+1
σ2

H

). For the second term we have

I(YAT;UH) =MAMB log

(

(P + 1)(P + 1 + σ2
H)

2P + 1 + σ2
H(P + 1)

)

The third term can be bounded using the MMSE estimate
of H1 calculated from (YAT,UH) and Lemma III.2:

h(UY|YAT,UH,XA) ≤MB log(πeσ̃2
A,UH

)

where σ̃2
A,UH

= P (1+σ2

H )
MA(2P+1+σ2

H
(P+1))

+ 1 + σ2
Y . Finally,

the last term is h(UY|YB,YAT,UH) = h(UY|YB) =
MB log(πeσ2

Y ). In total we get

Rp =MAMB log

(

1 +
2P + 1

σ2
H(P + 1)

)

+MB log

(

σ̃2
A,UH

σ2
Y

)

.

We see that, for fixed σ2
Y and σ2

H , Rp scales as Θ(1) with P .
Now let a fraction α of the coherence blocks at the end of the
transmission be dedicated to public discussion. This lowers
the achievable secret-key rate to (1 − α)Rnp

− . When used for
communication, the capacity C(P ) of the channel between
Bob and Alice scales with P as min(T/2, nA, nB) logP
[16]. Since Rp scales as Θ(1) with P , it is possible to have
αC(P ) > Rp, for any α > 0, provided that P is large enough.
Thus we can achieve any secret-key rate below Rnp

− , provided
that P is large enough.
It remains to show that the quantized observations give the

same number of s.d.o.f. as in the case with a public channel.
We expand Rnp

− in the same way as in (5) and get
Rnp

− =I(YAT;UH)− h(UY|YAT,UH,XA)+

h(UY|H,GA,YE).

For fixed σ2
Y and σ2

H the first term givesMAMB s.d.o.f. Using
Lemma III.2, the second term scales as Θ(1) with P , and
the last term gives (T −MA −MB) [min(MA − nE ,MB)]

+

s.d.o.f. The optimal choice of MA and MB implies that T −
MA − MB is positive only when MB = nB , so the result
follows.



V. CONCLUSIONS
We have considered secret-key agreement over a non-

coherent block-fading MIMO wiretap channel. Utilizing chan-
nel reciprocity we have developed a three-phase scheme based
on training and source emulation. By analyzing the number
of s.d.o.f. in the high SNR regime, we have characterized
the optimal number of antennas to use for training. We have
found that when the sum of the number of antennas at Alice
and Bob is larger than the coherence time of the channel,
the number of s.d.o.f. does not depend on the number of
antennas at Eve, since Alice and Bob can use the channel
gains as common randomness which Eve has no access to.
We have also considered secret-key agreement in the absence
of a public channel and have found that, in the high SNR
regime, the number of s.d.o.f. remain the same as in the case
with a public channel.
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APPENDIX
PROOF OF COR. III.4

Proof: Let

F = [min(MA − nE , nB)]
+ (T −MA −MB) +MAMB

=MB(MA − [min(MA − nE , nB)]
+)+

[min(MA − nE , nB)]
+ (T −MA). (13)

Since (MA − [min(MA − nE , nB)]
+) ≥ 0, F is maximized

by maximizing MB:

M!
B = min(nB , T −MA). (14)

By inserting (14) into (13) we get

F =min(nB, T −MA)(MA − [min(MA − nE , nB)]
+)

+ [min(MA − nE , nB)]
+ (T −MA).

We get three cases, depending on T . First, if T ≤ nE + nB ,

F =

{

MAnB if MA ≤ T − nB

MA(T −MA) if MA > T − nB.

If T/2 < nB , the maximum of F occurs at MA = T/2, and
otherwise it occurs at MA = T − nB .
In the second case, if nE +nB ≤ T ≤ nE +2nB , we have

F =


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

MAnB MA ≤ nE

MA(T + nE −MA)+

nE(nB − T ) nE < MA ≤ T − nB

MA(T −MA) MA > T − nB.

As in the first case, if T/2 < nB , the maximum occurs at
MA = T/2, and otherwise it occurs at MA = T − nB .
Finally, if T > nE + 2nB , we have

F =


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
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
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





MAnB MA ≤ nE ,

MA(T + nE −MA)+

nE(nB − T ) nE < MA ≤ nB + nE ,

nB(T − nB) nB + nE < MA ≤ T − nB,

MA(T −MA) MA > T − nB.

As before, if T/2 < nB , the maximum occurs at MA = T/2.
If T ≥ 2nB , there are several maxima, for nB +nE ≤ MA ≤
T − nB .
In all three cases above, at least one maximum occurs at

MA = max(T/2, T − nB), and, since F is non-decreasing
for MA < max(T/2, T − nB), we get

M!
A = min(nA,max(T/2, T − nB)).


