Robust Streaming Codes based on Deterministic Channel Approximations #### Ashish Khisti University of Toronto Joint Work with Ahmed Badr (Toronto), Wai-Tian Tan (HP Labs) and John Apostolopoulos (HP Labs) > ISIT, 2013 July 9th 2013 #### Motivation - Delay Sensitive Communication Delay is a central issue in many applications¹ | Application | Bit-Rate | MSDU (B) | Delay (ms) | Delay (pkts) | PLR | |--------------------|----------|----------|------------|--------------|-----------| | Video Conf. | 2 Mbps | 1500 | 100 ms | 24 | 10^{-4} | | Interactive Gaming | 1Mbps | 512 | 50 ms | 12 | 10^{-4} | | SDTV | 4Mbps | 1500 | 200 ms | 60 | 10^{-6} | Communication Medium: Wireless Channel. ¹IEEE Usage Model Proposal (doc.: IEEE 802.11-03/802r23) #### Motivation - Delay Sensitive Communication Delay is a central issue in many applications¹ | Application | Bit-Rate | MSDU (B) | Delay (ms) | Delay (pkts) | PLR | |--------------------|----------|----------|------------|--------------|-----------| | Video Conf. | 2 Mbps | 1500 | 100 ms | 24 | 10^{-4} | | Interactive Gaming | 1Mbps | 512 | 50 ms | 12 | 10^{-4} | | SDTV | 4Mbps | 1500 | 200 ms | 60 | 10^{-6} | Communication Medium: Wireless Channel. #### Prior Work - Real Time Streaming Communication - Structural Theorems on Real-Time Encoders (Witsenhausen '79, Teneketzis '06) - Tree Codes (Schulman '96, Sahai '01, Sukhavasi and Hassibi '11) - Real-Time Scheduling (Hou and Kumar '11, Shakkottai and Srikanth '11) - Low-delay Path Selection (Chen et. al.) ¹IEEE Usage Model Proposal (doc.: IEEE 802.11-03/802r23) - ullet Assume $\mathbf{s}[t] \in \mathbb{F}_q^k$, i.i.d. uniform - ullet $\mathbf{x}[t] \in \mathbb{F}_q^n$. Causal Encoder. - Rate: $R = \frac{k}{n}$ - ullet Assume $\mathbf{s}[t] \in \mathbb{F}_q^k$, i.i.d. uniform - $\mathbf{x}[t] \in \mathbb{F}_q^n$. Causal Encoder. - Rate: $R = \frac{k}{n}$ - Channel $\mathcal{C}(N,B,W)$: Any sliding window of length W contains - A **burst** of maximum length B, or, - ullet No more than N erasures in **arbitrary** positions. - ullet Assume $\mathbf{s}[t] \in \mathbb{F}_q^k$, i.i.d. uniform - $\mathbf{x}[t] \in \mathbb{F}_q^n$. Causal Encoder. - Rate: $R = \frac{k}{n}$ - Channel $\mathcal{C}(N,B,W)$: Any sliding window of length W contains - A **burst** of maximum length B, or, - ullet No more than N erasures in **arbitrary** positions. - ullet Assume $\mathbf{s}[t] \in \mathbb{F}_q^k$, i.i.d. uniform - $\mathbf{x}[t] \in \mathbb{F}_q^n$. Causal Encoder. - Rate: $R = \frac{k}{n}$ - Channel $\mathcal{C}(N,B,W)$: Any sliding window of length W contains - A **burst** of maximum length B, or, - ullet No more than N erasures in **arbitrary** positions. - ullet Assume $\mathbf{s}[t] \in \mathbb{F}_q^k$, i.i.d. uniform - $\mathbf{x}[t] \in \mathbb{F}_q^n$. Causal Encoder. - Rate: $R = \frac{k}{n}$ - Channel $\mathcal{C}(N,B,W)$: Any sliding window of length W contains - A **burst** of maximum length B, or, - ullet No more than N erasures in **arbitrary** positions. - ullet Assume $\mathbf{s}[t] \in \mathbb{F}_q^k$, i.i.d. uniform - $\mathbf{x}[t] \in \mathbb{F}_q^n$. Causal Encoder. - Rate: $R = \frac{k}{n}$ - Channel $\mathcal{C}(N,B,W)$: Any sliding window of length W contains - \bullet A **burst** of maximum length B, or, - \bullet No more than N erasures in **arbitrary** positions. $$(N,B,W) = (2,3,6)$$ $(N,B,W) = (2,3,6)$ (N,B,W) • Capacity R(N, B, W, T) #### Main Result #### **Theorem** Consider the $\mathcal{C}(N,B,W)$ channel, with $W \geq B+1$, and let the delay be T. **Upper-Bound**(Badr et al. INFOCOM'13) For any rate R code, we have: $$\left(\frac{R}{1-R}\right)B+N \leq \min(W,T+1)$$ #### Main Result #### $\mathsf{Theorem}$ Consider the $\mathcal{C}(N,B,W)$ channel, with $W \geq B+1$, and let the delay be T. **Upper-Bound**(Badr et al. INFOCOM'13) For any rate R code, we have: $$\left(\frac{R}{1-R}\right)B + N \le \min(W, T+1)$$ **Lower-Bound:** There exists a rate R code that satisfies: $$\left(\frac{R}{1-R}\right)B+N\geq \min(W,T+1)-1.$$ The gap between the upper and lower bound is 1 unit of delay. $$\bigcap_{i=1}^{k} \bigcap_{j=1}^{k} \bigcap_{j$$ $$\mathbf{p}_i = \mathbf{s}_i \cdot \mathbf{H}_0 + \mathbf{s}_{i-1} \cdot \mathbf{H}_1 + \ldots + \mathbf{s}_{i-M} \cdot \mathbf{H}_M, \qquad \mathbf{H}_i \in \mathbb{F}_q^{k \times n - k}$$ Erasure Codes: - Random Linear Codes - Strongly-MDS Codes (Gabidulin'88, Gluesing-Luerssen'06) $$\mathbf{p}_i = \mathbf{s}_i \cdot \mathbf{H}_0 + \mathbf{s}_{i-1} \cdot \mathbf{H}_1 + \ldots + \mathbf{s}_{i-M} \cdot \mathbf{H}_M, \qquad \mathbf{H}_i \in \mathbb{F}_q^{k \times n - k}$$ Erasure Codes: - Random Linear Codes - Strongly-MDS Codes (Gabidulin'88, Gluesing-Luerssen'06) $$\mathbf{p}_i = \mathbf{s}_i \cdot \mathbf{H}_0 + \mathbf{s}_{i-1} \cdot \mathbf{H}_1 + \ldots + \mathbf{s}_{i-M} \cdot \mathbf{H}_M, \qquad \mathbf{H}_i \in \mathbb{F}_q^{k \times n - k}$$ Erasure Codes: - Random Linear Codes - Strongly-MDS Codes (Gabidulin'88, Gluesing-Luerssen'06) $$\mathbf{p}_i = \mathbf{s}_i \cdot \mathbf{H}_0 + \mathbf{s}_{i-1} \cdot \mathbf{H}_1 + \ldots + \mathbf{s}_{i-M} \cdot \mathbf{H}_M, \qquad \mathbf{H}_i \in \mathbb{F}_q^{k \times n - k}$$ Erasure Codes: - Random Linear Codes - Strongly-MDS Codes (Gabidulin'88, Gluesing-Luerssen'06) $$\mathbf{p}_i = \mathbf{s}_i \cdot \mathbf{H}_0 + \mathbf{s}_{i-1} \cdot \mathbf{H}_1 + \ldots + \mathbf{s}_{i-M} \cdot \mathbf{H}_M, \qquad \mathbf{H}_i \in \mathbb{F}_q^{k \times n - k}$$ Erasure Codes: - Random Linear Codes - Strongly-MDS Codes (Gabidulin'88, Gluesing-Luerssen'06) $$\mathbf{p}_i = \mathbf{s}_i \cdot \mathbf{H}_0 + \mathbf{s}_{i-1} \cdot \mathbf{H}_1 + \ldots + \mathbf{s}_{i-M} \cdot \mathbf{H}_M, \qquad \mathbf{H}_i \in \mathbb{F}_q^{k \times n - k}$$ Erasure Codes: - Random Linear Codes - Strongly-MDS Codes (Gabidulin'88, Gluesing-Luerssen'06) $$\mathbf{p}_i = \mathbf{s}_i \cdot \mathbf{H}_0 + \mathbf{s}_{i-1} \cdot \mathbf{H}_1 + \ldots + \mathbf{s}_{i-M} \cdot \mathbf{H}_M, \qquad \mathbf{H}_i \in \mathbb{F}_q^{k \times n - k}$$ Erasure Codes: - Random Linear Codes - Strongly-MDS Codes (Gabidulin'88, Gluesing-Luerssen'06) $$\mathbf{p}_i = \mathbf{s}_i \cdot \mathbf{H}_0 + \mathbf{s}_{i-1} \cdot \mathbf{H}_1 + \ldots + \mathbf{s}_{i-M} \cdot \mathbf{H}_M, \qquad \mathbf{H}_i \in \mathbb{F}_q^{k \times n - k}$$ Erasure Codes: - Random Linear Codes - Strongly-MDS Codes (Gabidulin'88, Gluesing-Luerssen'06) $$\mathbf{p}_i = \mathbf{s}_i \cdot \mathbf{H}_0 + \mathbf{s}_{i-1} \cdot \mathbf{H}_1 + \ldots + \mathbf{s}_{i-M} \cdot \mathbf{H}_M, \qquad \mathbf{H}_i \in \mathbb{F}_q^{k \times n - k}$$ Erasure Codes: - Random Linear Codes - Strongly-MDS Codes (Gabidulin'88, Gluesing-Luerssen'06) $$\begin{bmatrix} \mathbf{p}_4 \\ \mathbf{p}_5 \\ \mathbf{p}_6 \\ \mathbf{p}_7 \end{bmatrix} = \underbrace{ \begin{bmatrix} \mathbf{H}_4 & \mathbf{H}_3 & \mathbf{H}_2 & \mathbf{H}_1 \\ \mathbf{H}_5 & \mathbf{H}_4 & \mathbf{H}_3 & \mathbf{H}_2 \\ 0 & \mathbf{H}_5 & \mathbf{H}_4 & \mathbf{H}_3 \\ 0 & 0 & \mathbf{H}_5 & \mathbf{H}_4 \end{bmatrix} }_{\text{full rank}} \begin{bmatrix} \mathbf{s}_0 \\ \mathbf{s}_1 \\ \mathbf{s}_2 \\ \mathbf{s}_3 \end{bmatrix}$$ # Streaming Codes - Burst Erasure Channel N = 1, B = 4, T = 8 Rate 1/2 Baseline Erasure Codes, T=7 # Streaming Codes - Burst Erasure Channel N = 1, B = 4, T = 8 Rate 1/2 Baseline Erasure Codes, T=7 Rate 1/2 Repetition Code, T=8 # Burst-Erasure Streaming Codes N = 1, B = 4, T = 8 | $\mathbf{v}_{_{0}}$ | $\mathbf{v}_{_{1}}$ | $\mathbf{v_2}$ | v ₃ | $\mathbf{v}_{_{4}}$ | v ₅ | v ₆ | \mathbf{v}_7 | v ₈ | v ₉ | V ₁₀ | v ₁₁ | v | |---------------------|---------------------|----------------|-----------------------|---------------------|-----------------------|-----------------------|-----------------------|----------------|----------------|------------------------|------------------------|----------------| | \mathbf{p}_{0} | p ₁ | p ₂ | p ₃ | P ₄ | p ₅ | P ₆ | p ₇ | P ₈ | p ₉ | p ₁₀ | p ₁₁ | $\downarrow u$ | | \mathbf{u}_{0} | u ₁ | u ₂ | u ₃ | u ₄ | u ₅ | u ₆ | u ₇ | u ₈ | u ₉ | u ₁₀ | u ₁₁ | $\uparrow u$ | |------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|------------------------|-----------------|--------------| | u ₋₈ | | | | | | | | | | | | | # Burst-Erasure Streaming Codes N = 1, B = 4, T = 8 | \mathbf{u}_{0} | u ₁ | u ₂ | u ₃ | u ₄ | \mathbf{u}_{5} | \mathbf{u}_{6} | u ₇ | u ₈ | u ₉ | u ₁₀ | u ₁₁ | u | |------------------|------------------|-----------------|-----------------------|-----------------|-----------------------|------------------|-----------------------|----------------|----------------|------------------------|------------------------|----------------| | V ₀ | $\mathbf{v_1}$ | v ₂ | \mathbf{v}_{3} | V ₄ | v ₅ | v ₆ | v ₇ | V ₈ | V ₉ | V ₁₀ | v ₁₁ | v | | $\mathbf{p_0}$ | \mathbf{p}_{1} | p ₂ | p ₃ | P ₄ | p ₅ | P ₆ | p ₇ | P ₈ | p ₉ | p ₁₀ | # 11 | $\uparrow u$ | | u ₋₈ | u ₋₇ | u ₋₆ | u 5 | u ₋₄ | u ₋₃ | | | | u ₁ | u ₂ | u ₃ | $\frac{1}{2}u$ | $$R = \frac{u+v}{3u+v} = \frac{1}{2}$$ N = 1, B = 4, T = 8 | | \mathbf{u}_{0} | u ₁ | u ₂ | u ₃ | u ₄ | u ₅ | u ₆ | u ₇ | u ₈ | u ₉ | u ₁₀ | u ₁₁ | u | | |------------------|------------------|---------------------|------------------|-----------------------|------------------|-----------------------|------------------|------------------|-----------------|-----------------|------------------------|-------------------------|------------|------------------------------| | \mathbf{s}_{i} | V ₀ | $\mathbf{v}_{_{1}}$ | $\mathbf{v_2}$ | v ₃ | $\mathbf{v_4}$ | v ₅ | v ₆ | \mathbf{v}_7 | v ₈ | V ₉ | V ₁₀ | V ₁₁ | v | $\rightarrow \mathbf{x}_{i}$ | | | \mathbf{p}_{0} | p ₁ | p ₂ | p ₃ | p ₄ | p ₅ | p ₆ | p ₇ | p ₈ | p ₉ | p ₁₀ | p ₁₁ | u | | | | +u ₋₈ | +u ₋₇ | +u ₋₆ | +u ₋₅ | +u ₋₄ | +u ₋₃ | +u ₋₂ | +u ₋₁ | $+\mathbf{u}_0$ | +u ₁ | $ +\mathbf{u}_2 $ | + u ₃ | ↓ ∠ | J | $$R = \frac{u+v}{2u+v} = \frac{2}{3}$$ N = 1, B = 4, T = 8 | $\int \left \mathbf{u}_0 \right \left \mathbf{u}_1 \right \left \mathbf{u}_1 \right $ | $u_3/$ | u ₄ | u ₅ | \mathbf{u}_{6} | u ₇ | u ₈ | u ₉ | u ₁₀ | u ₁₁ | u | | |--|-------------------------------|---|---|---|---|-------------------------------|--|--|--|-----------------------|---------| | S_i | 2 3 | V ₄ | V ₅ | v ₆ | v ₇ | V ₈ | V ₉ | V ₁₀ | V ₁₁ | Įν | $> X_i$ | | | /p 3
 / u_3 | p ₄
+ u ₋₄ | p ₅
+ u ₋₃ | p ₆
+ u ₋₂ | p ₇
+ u ₋₁ | $\mathbf{p_8} + \mathbf{u_0}$ | p ₉
+ u ₁ | p ₁₀ + u ₂ | p ₁₁ + u ₃ | $\int_{0}^{\infty} u$ | | $$R = \frac{u+v}{2u+v} = \frac{2}{3}$$ - f 1 Split each source symbol into 2 groups ${f s}_i=({f u}_i,{f v}_i)$ - 2 Apply Erasure code to the v_i stream generating p_i parities - 3 Repeat the \mathbf{u}_i symbols with a shift of T - 4 Combine the repeated \mathbf{u}_i 's with the \mathbf{p}_i 's N = 1, B = 4, T = 8 - f 1 Split each source symbol into 2 groups ${f s}_i=({f u}_i,{f v}_i)$ - 2 Apply Erasure code to the \mathbf{v}_i stream generating \mathbf{p}_i parities - 3 Repeat the \mathbf{u}_i symbols with a shift of T - 4 Combine the repeated \mathbf{u}_i 's with the \mathbf{p}_i 's N = 1, B = 4, T = 8 - f 1 Split each source symbol into 2 groups ${f s}_i=({f u}_i,{f v}_i)$ - 2 Apply Erasure code to the v_i stream generating p_i parities - $oldsymbol{3}$ Repeat the \mathbf{u}_i symbols with a shift of T - $oldsymbol{\Phi}$ Combine the repeated \mathbf{u}_i 's with the \mathbf{p}_i 's N = 1, B = 4, T = 8 - f 1 Split each source symbol into 2 groups ${f s}_i=({f u}_i,{f v}_i)$ - 2 Apply Erasure code to the v_i stream generating p_i parities - 3 Repeat the \mathbf{u}_i symbols with a shift of T - $oldsymbol{\Phi}$ Combine the repeated \mathbf{u}_i 's with the \mathbf{p}_i 's N = 1, B = 4, T = 8 - f 1 Split each source symbol into 2 groups ${f s}_i=({f u}_i,{f v}_i)$ - 2 Apply Erasure code to the v_i stream generating p_i parities - 3 Repeat the \mathbf{u}_i symbols with a shift of T - $oldsymbol{\Phi}$ Combine the repeated \mathbf{u}_i 's with the \mathbf{p}_i 's ### Isolated Erasures $N \ge 2$ $$T = 8$$ - Erasures at time t=0 and t=8 - \bullet \mathbf{u}_0 cannot be recovered due to a repetition code $N \ge 2$ | ſ | \mathbf{u}_{0} | u ₁ | u ₂ | u ₃ | u ₄ | u ₅ | u ₆ | u ₇ | u ₈ | u ₉ | u ₁₀ | u ₁₁ | u | | |---|------------------|------------------|------------------|------------------|---------------------|-----------------------|------------------|-----------------------|------------------|-----------------|------------------------|------------------------|----------------|------------| | ĺ | V ₀ | v ₁ | v ₂ | v ₃ | v ₄ | v ₅ | v ₆ | v ₇ | V ₈ | V ₉ | V ₁₀ | V ₁₁ | v | X . | | | P ₀ | P ₁ | P ₂ | P ₃ | P ₄ | P ₅ | P ₆ | p ₇ | P ₈ | P ₉ | p ₁₀ | p ₁₁ | u | | | | +u ₋₈ | +u ₋₇ | +u ₋₆ | +u ₋₅ | +u ₋₄ | +u ₋₃ | +u ₋₂ | +u ₋₁ | $+\mathbf{u}_0$ | +u ₁ | +u ₂ | +u ₃ | ↓ 丿 | | | | \mathbf{q}_{0} | q ₁ | \mathbf{q}_{2} | q ₃ | $\mathbf{q}_{_{4}}$ | q ₅ | \mathbf{q}_{6} | q ₇ | \mathbf{q}_{8} | q ₉ | \mathbf{q}_{10} | q ₁₁ | $\downarrow k$ | | #### Layered Code Design - ullet Burst-Erasure Streaming Code $\mathcal{C}_1: (\mathbf{u}_i, \mathbf{v}_i, \mathbf{p}_i + \mathbf{u}_{i-T})$ - ullet Erasure Code: $\mathbf{q}_i = f_i(\mathbf{u}_0, \dots, \mathbf{u}_{i-1}) \in \mathbb{F}_q^k$ - ullet Append \mathbf{q}_i to \mathcal{C}_1 : $(\mathbf{u}_i, \mathbf{v}_i, \mathbf{p}_i + \mathbf{u}_{i-T}, \mathbf{q}_i)$ $$R = \frac{u+v}{2u+v+k}, \qquad k = \frac{N}{T-N+1}B$$ $N \ge 2$ #### Layered Code Design - ullet Burst-Erasure Streaming Code $\mathcal{C}_1: (\mathbf{u}_i, \mathbf{v}_i, \mathbf{p}_i + \mathbf{u}_{i-T})$ - ullet Erasure Code: $\mathbf{q}_i = f_i(\mathbf{u}_0, \dots, \mathbf{u}_{i-1}) \in \mathbb{F}_q^k$ - ullet Append \mathbf{q}_i to \mathcal{C}_1 : $(\mathbf{u}_i, \mathbf{v}_i, \mathbf{p}_i + \mathbf{u}_{i-T}, \mathbf{q}_i)$ $$R = \frac{u+v}{2u+v+k}, \qquad k = \frac{N}{T-N+1}B$$ $N \ge 2$ #### Layered Code Design - ullet Burst-Erasure Streaming Code $\mathcal{C}_1: (\mathbf{u}_i, \mathbf{v}_i, \mathbf{p}_i + \mathbf{u}_{i-T})$ - ullet Erasure Code: $\mathbf{q}_i = f_i(\mathbf{u}_0, \dots, \mathbf{u}_{i-1}) \in \mathbb{F}_q^k$ - ullet Append \mathbf{q}_i to \mathcal{C}_1 : $(\mathbf{u}_i, \mathbf{v}_i, \mathbf{p}_i + \mathbf{u}_{i-T}, \mathbf{q}_i)$ $$R = \frac{u+v}{2u+v+k}, \qquad k = \frac{N}{T-N+1}B$$ $N \ge 2$ - Burst-Erasure Streaming Code $C_1 : (\mathbf{u}_i, \mathbf{v}_i, \mathbf{p}_i + \mathbf{u}_{i-T})$ - ullet Erasure Code: $\mathbf{q}_i = f_i(\mathbf{u}_0, \dots, \mathbf{u}_{i-1}) \in \mathbb{F}_q^k$ - ullet Append \mathbf{q}_i to \mathcal{C}_1 : $(\mathbf{u}_i, \mathbf{v}_i, \mathbf{p}_i + \mathbf{u}_{i-T}, \mathbf{q}_i)$ $$R = \frac{u+v}{2u+v+k}, \qquad k = \frac{N}{T-N+1}B$$ $N \ge 2$ Layered Code Design • Burst-Erasure Streaming Code $C_1 : (\mathbf{u}_i, \mathbf{v}_i, \mathbf{p}_i + \mathbf{u}_{i-T})$ • Erasure Code: $\mathbf{q}_i = f_i(\mathbf{u}_0, \dots, \mathbf{u}_{i-1}) \in \mathbb{F}_q^k$ • Append \mathbf{q}_i to \mathcal{C}_1 : $(\mathbf{u}_i, \mathbf{v}_i, \mathbf{p}_i + \mathbf{u}_{i-T}, \mathbf{q}_i)$ $$R = \frac{u+v}{2u+v+k}, \qquad k = \frac{N}{T-N+1}B$$ Streaming Codes for Burst Erasure Channel (Block Code + Interleaving): Martinian and Sundberg (IT-2004), Martinian and Trott (ISIT-2007) - Streaming Codes for Burst Erasure Channel (Block Code + Interleaving): Martinian and Sundberg (IT-2004), Martinian and Trott (ISIT-2007) - Other Variations of Streaming Codes - Unequal Source Channel Rates (Patil-Badr-Khisti-Tan Asilomar 2013, ISIT 2013, Poster) - Multicast Extension (Khisti-Singh 2009, Badr-Lui-Khisti Allerton 2010) - Parallel Channels (Lui-Badr-Khisti CWIT 2011) - Multi-Source Streaming Codes (Lui Thesis, 2011) - Lower Field Size for MiDAS Codes (Badr et. al. CWIT 2013) - Streaming Codes for Burst Erasure Channel (Block Code + Interleaving): Martinian and Sundberg (IT-2004), Martinian and Trott (ISIT-2007) - Other Variations of Streaming Codes - Unequal Source Channel Rates (Patil-Badr-Khisti-Tan Asilomar 2013, ISIT 2013, Poster) - Multicast Extension (Khisti-Singh 2009, Badr-Lui-Khisti Allerton 2010) - Parallel Channels (Lui-Badr-Khisti CWIT 2011) - Multi-Source Streaming Codes (Lui Thesis, 2011) - Lower Field Size for MiDAS Codes (Badr et. al. CWIT 2013) - Connections between Network Coding and Real-Time Streaming Codes (Tekin-Ho-Yao-Jaggi ITA-2012, Leong and Ho ISIT-2012) - Streaming Codes for Burst Erasure Channel (Block Code + Interleaving): Martinian and Sundberg (IT-2004), Martinian and Trott (ISIT-2007) - Other Variations of Streaming Codes - Unequal Source Channel Rates (Patil-Badr-Khisti-Tan Asilomar 2013, ISIT 2013, Poster) - Multicast Extension (Khisti-Singh 2009, Badr-Lui-Khisti Allerton 2010) - Parallel Channels (Lui-Badr-Khisti CWIT 2011) - Multi-Source Streaming Codes (Lui Thesis, 2011) - Lower Field Size for MiDAS Codes (Badr et. al. CWIT 2013) - Connections between Network Coding and Real-Time Streaming Codes (Tekin-Ho-Yao-Jaggi ITA-2012, Leong and Ho ISIT-2012) - Tree Codes: Schulman (IT 1996), Sahai (2001), Martinian and Wornell (Allerton 2004), Sukhavasi and Hassibi (2011) MiDAS \rightarrow (Near) Maximum Distance And Span tradeoff Consider (n,k,m) Convolutional code: $\mathbf{x}_i = \sum_{j=0}^m \mathbf{s}_{i-j} \mathbf{G}_j$ MiDAS \rightarrow (Near) Maximum Distance And Span tradeoff Consider (n,k,m) Convolutional code: $\mathbf{x}_i = \sum_{j=0}^m \mathbf{s}_{i-j} \mathbf{G}_j$ Trellis Diagram - Free Distance MiDAS \rightarrow (Near) Maximum Distance And Span tradeoff Consider (n, k, m) Convolutional code: $\mathbf{x}_i = \sum_{j=0}^m \mathbf{s}_{i-j} \mathbf{G}_j$ $$d_T = \min_{\substack{[\mathbf{s}_0, \dots, \mathbf{s}_T] \\ \mathbf{s}_0 \neq 0}} \operatorname{wt} \left(\begin{bmatrix} \mathbf{s}_0 & \dots & \mathbf{s}_T \end{bmatrix} \begin{bmatrix} \mathbf{G}_0 & \mathbf{G}_1 & \dots & \mathbf{G}_T \\ 0 & \mathbf{G}_0 & \dots & \mathbf{G}_{T-1} \\ \vdots & & \ddots & \vdots \\ 0 & & \dots & \mathbf{G}_0 \end{bmatrix} \right)$$ Column Distance in [0.3] ISIT, 2013 July 9th 2013 MiDAS \rightarrow (Near) Maximum Distance And Span tradeoff Consider (n, k, m) Convolutional code: $\mathbf{x}_i = \sum_{j=0}^m \mathbf{s}_{i-j} \mathbf{G}_j$ Column Distance in [0.3] $$d_T = \min_{\substack{[\mathbf{s}_0, \dots, \mathbf{s}_T] \\ \mathbf{s}_0 \neq 0}} \operatorname{wt} \left(\begin{bmatrix} \mathbf{s}_0 & \dots & \mathbf{s}_T \end{bmatrix} \begin{bmatrix} \mathbf{G}_0 & \mathbf{G}_1 & \dots & \mathbf{G}_T \\ 0 & \mathbf{G}_0 & \dots & \mathbf{G}_{T-1} \\ \vdots & & \ddots & \vdots \\ 0 & & \dots & \mathbf{G}_0 \end{bmatrix} \right)$$ ISIT, 2013 July 9th 2013 MiDAS → (Near) Maximum Distance And Span tradeoff Consider (n,k,m) Convolutional code: $\mathbf{x}_i = \sum_{j=0}^m \mathbf{s}_{i-j} \mathbf{G}_j$ Column Span in [0.3] Column Span: c_T $$c_T = \min_{\substack{[\mathbf{s}_0, \dots, \mathbf{s}_T] \\ \mathbf{s}_0 \neq 0}} \operatorname{span} \left(\begin{bmatrix} \mathbf{s}_0 & \dots & \mathbf{s}_T \end{bmatrix} \begin{bmatrix} \mathbf{G}_0 & \mathbf{G}_1 & \dots & \mathbf{G}_T \\ 0 & \mathbf{G}_0 & \dots & \mathbf{G}_{T-1} \\ \vdots & & \ddots & \vdots \\ 0 & & \dots & \mathbf{G}_0 \end{bmatrix} \right)$$ ISIT, 2013 July 9th 2013 ## Column-Distance & Column Span Tradeoff #### Theorem Consider a $\mathcal{C}(N,B,W)$ channel with delay T and $W \geq T+1$. A streaming code is feasible over this channel if and only if it satisfies: $d_T \geq N+1$ and $c_T \geq B+1$ ## Column-Distance & Column Span Tradeoff #### Theorem Consider a $\mathcal{C}(N,B,W)$ channel with delay T and $W \geq T+1$. A streaming code is feasible over this channel if and only if it satisfies: $d_T \geq N+1$ and $c_T \geq B+1$ #### **Theorem** For any rate R convolutional code and any $T \ge 0$ the Column-Distance d_T and Column-Span c_T satisfy the following: $$\left(\frac{R}{1-R}\right)c_T + d_T \le T + 1 + \frac{1}{1-R}$$ There exists a rate R code (MiDAS Code) over a sufficiently large field that satisfies: $$\left(\frac{R}{1-R}\right)c_T + d_T \ge T + \frac{1}{1-R}$$ ### Simulation Results Gilbert-Eliott Channel $(\alpha, \beta) = (5 \times 10^{-4}, 0.5), T = 12$ and R = 12/23 #### Gilbert Elliott Channel ullet Good State: $\Pr(\mathrm{loss}) = \varepsilon$ • Bad State: Pr(loss) = 1 ### Simulation Results Gilbert-Eliott Channel $(\alpha, \beta) = (5 \times 10^{-4}, 0.5), T = 12$ and R = 12/23 | Code | N | В | Code | N | В | |---------------|---|----|-------|---|---| | Strongly MDS | 6 | 6 | MiDAS | 2 | 9 | | Burst-Erasure | 1 | 11 | | | | ### Simulation Results - II Gilbert-Eliott Channel $(\alpha, \beta) = (5 \times 10^{-5}, 0.2), T = 50$ and $R \approx 0.6$ | Code | N | В | Code | N | В | |---------------|----|----|-------|---|----| | Strongly MDS | 20 | 20 | MiDAS | 4 | 30 | | Burst-Erasure | 1 | 33 | PRC | 4 | 25 | ### Conclusions - Error Correction Codes for Real-Time Streaming - Deterministic Channel Models C(N, B, W) - ullet Tradeoff between achievable N and B - MiDAS Constructions - Column-Distance and Column-Span Tradeoff - Partial Recovery Codes for Burst + Isolated Erasures ### Burst plus Isolated Erasures $\mathcal{C}_{II}(N,B,W)$ that in a window of length W introduces - ullet A burst erasure of length B plus one isolated erasure - ullet Upto N isolated erasures ## Burst plus Isolated Erasures $\mathcal{C}_{II}(N,B,W)$ that in a window of length W introduces - A burst erasure of length *B plus* one isolated erasure - ullet Upto N isolated erasures #### Gilbert Elliott Channel - Good State: $Pr(loss) = \varepsilon$ - Bad State: Pr(loss) = 1 ### Burst plus Isolated Erasures $\mathcal{C}_{II}(N,B,W)$ that in a window of length W introduces - A burst erasure of length *B plus* one isolated erasure - ullet Upto N isolated erasures #### Partial Recovery Codes - Layered Construction - Partial Recovery for burst + isolated patterns