Robust Streaming Codes based on Deterministic Channel Approximations

Ashish Khisti University of Toronto

Joint Work with Ahmed Badr (Toronto), Wai-Tian Tan (HP Labs) and John Apostolopoulos (HP Labs)

> ISIT, 2013 July 9th 2013

Motivation - Delay Sensitive Communication

Delay is a central issue in many applications¹

Application	Bit-Rate	MSDU (B)	Delay (ms)	Delay (pkts)	PLR
Video Conf.	2 Mbps	1500	100 ms	24	10^{-4}
Interactive Gaming	1Mbps	512	50 ms	12	10^{-4}
SDTV	4Mbps	1500	200 ms	60	10^{-6}

Communication Medium: Wireless Channel.

¹IEEE Usage Model Proposal (doc.: IEEE 802.11-03/802r23)

Motivation - Delay Sensitive Communication

Delay is a central issue in many applications¹

Application	Bit-Rate	MSDU (B)	Delay (ms)	Delay (pkts)	PLR
Video Conf.	2 Mbps	1500	100 ms	24	10^{-4}
Interactive Gaming	1Mbps	512	50 ms	12	10^{-4}
SDTV	4Mbps	1500	200 ms	60	10^{-6}

Communication Medium: Wireless Channel.

Prior Work - Real Time Streaming Communication

- Structural Theorems on Real-Time Encoders (Witsenhausen '79, Teneketzis '06)
- Tree Codes (Schulman '96, Sahai '01, Sukhavasi and Hassibi '11)
- Real-Time Scheduling (Hou and Kumar '11, Shakkottai and Srikanth '11)
- Low-delay Path Selection (Chen et. al.)

¹IEEE Usage Model Proposal (doc.: IEEE 802.11-03/802r23)

- ullet Assume $\mathbf{s}[t] \in \mathbb{F}_q^k$, i.i.d. uniform
- ullet $\mathbf{x}[t] \in \mathbb{F}_q^n$. Causal Encoder.
- Rate: $R = \frac{k}{n}$

- ullet Assume $\mathbf{s}[t] \in \mathbb{F}_q^k$, i.i.d. uniform
- $\mathbf{x}[t] \in \mathbb{F}_q^n$. Causal Encoder.
- Rate: $R = \frac{k}{n}$
- Channel $\mathcal{C}(N,B,W)$: Any sliding window of length W contains
 - A **burst** of maximum length B, or,
 - ullet No more than N erasures in **arbitrary** positions.

- ullet Assume $\mathbf{s}[t] \in \mathbb{F}_q^k$, i.i.d. uniform
- $\mathbf{x}[t] \in \mathbb{F}_q^n$. Causal Encoder.
- Rate: $R = \frac{k}{n}$
- Channel $\mathcal{C}(N,B,W)$: Any sliding window of length W contains
 - A **burst** of maximum length B, or,
 - ullet No more than N erasures in **arbitrary** positions.

- ullet Assume $\mathbf{s}[t] \in \mathbb{F}_q^k$, i.i.d. uniform
- $\mathbf{x}[t] \in \mathbb{F}_q^n$. Causal Encoder.
- Rate: $R = \frac{k}{n}$
- Channel $\mathcal{C}(N,B,W)$: Any sliding window of length W contains
 - A **burst** of maximum length B, or,
 - ullet No more than N erasures in **arbitrary** positions.

- ullet Assume $\mathbf{s}[t] \in \mathbb{F}_q^k$, i.i.d. uniform
- $\mathbf{x}[t] \in \mathbb{F}_q^n$. Causal Encoder.
- Rate: $R = \frac{k}{n}$
- Channel $\mathcal{C}(N,B,W)$: Any sliding window of length W contains
 - A **burst** of maximum length B, or,
 - ullet No more than N erasures in **arbitrary** positions.

- ullet Assume $\mathbf{s}[t] \in \mathbb{F}_q^k$, i.i.d. uniform
- $\mathbf{x}[t] \in \mathbb{F}_q^n$. Causal Encoder.
- Rate: $R = \frac{k}{n}$
- Channel $\mathcal{C}(N,B,W)$: Any sliding window of length W contains
 - \bullet A **burst** of maximum length B, or,
 - \bullet No more than N erasures in **arbitrary** positions.

$$(N,B,W) = (2,3,6)$$
 $(N,B,W) = (2,3,6)$
 (N,B,W)

• Capacity R(N, B, W, T)

Main Result

Theorem

Consider the $\mathcal{C}(N,B,W)$ channel, with $W \geq B+1$, and let the delay be T.

Upper-Bound(Badr et al. INFOCOM'13) For any rate R code, we have:

$$\left(\frac{R}{1-R}\right)B+N \leq \min(W,T+1)$$

Main Result

$\mathsf{Theorem}$

Consider the $\mathcal{C}(N,B,W)$ channel, with $W \geq B+1$, and let the delay be T.

Upper-Bound(Badr et al. INFOCOM'13) For any rate R code, we have:

$$\left(\frac{R}{1-R}\right)B + N \le \min(W, T+1)$$

Lower-Bound: There exists a rate R code that satisfies:

$$\left(\frac{R}{1-R}\right)B+N\geq \min(W,T+1)-1.$$

The gap between the upper and lower bound is 1 unit of delay.

$$\bigcap_{i=1}^{k} \bigcap_{j=1}^{k} \bigcap_{j$$

$$\mathbf{p}_i = \mathbf{s}_i \cdot \mathbf{H}_0 + \mathbf{s}_{i-1} \cdot \mathbf{H}_1 + \ldots + \mathbf{s}_{i-M} \cdot \mathbf{H}_M, \qquad \mathbf{H}_i \in \mathbb{F}_q^{k \times n - k}$$
 Erasure Codes:

- Random Linear Codes
- Strongly-MDS Codes (Gabidulin'88, Gluesing-Luerssen'06)

$$\mathbf{p}_i = \mathbf{s}_i \cdot \mathbf{H}_0 + \mathbf{s}_{i-1} \cdot \mathbf{H}_1 + \ldots + \mathbf{s}_{i-M} \cdot \mathbf{H}_M, \qquad \mathbf{H}_i \in \mathbb{F}_q^{k \times n - k}$$
 Erasure Codes:

- Random Linear Codes
- Strongly-MDS Codes (Gabidulin'88, Gluesing-Luerssen'06)

$$\mathbf{p}_i = \mathbf{s}_i \cdot \mathbf{H}_0 + \mathbf{s}_{i-1} \cdot \mathbf{H}_1 + \ldots + \mathbf{s}_{i-M} \cdot \mathbf{H}_M, \qquad \mathbf{H}_i \in \mathbb{F}_q^{k \times n - k}$$
 Erasure Codes:

- Random Linear Codes
- Strongly-MDS Codes (Gabidulin'88, Gluesing-Luerssen'06)

$$\mathbf{p}_i = \mathbf{s}_i \cdot \mathbf{H}_0 + \mathbf{s}_{i-1} \cdot \mathbf{H}_1 + \ldots + \mathbf{s}_{i-M} \cdot \mathbf{H}_M, \qquad \mathbf{H}_i \in \mathbb{F}_q^{k \times n - k}$$
 Erasure Codes:

- Random Linear Codes
- Strongly-MDS Codes (Gabidulin'88, Gluesing-Luerssen'06)

$$\mathbf{p}_i = \mathbf{s}_i \cdot \mathbf{H}_0 + \mathbf{s}_{i-1} \cdot \mathbf{H}_1 + \ldots + \mathbf{s}_{i-M} \cdot \mathbf{H}_M, \qquad \mathbf{H}_i \in \mathbb{F}_q^{k \times n - k}$$
 Erasure Codes:

- Random Linear Codes
- Strongly-MDS Codes (Gabidulin'88, Gluesing-Luerssen'06)

$$\mathbf{p}_i = \mathbf{s}_i \cdot \mathbf{H}_0 + \mathbf{s}_{i-1} \cdot \mathbf{H}_1 + \ldots + \mathbf{s}_{i-M} \cdot \mathbf{H}_M, \qquad \mathbf{H}_i \in \mathbb{F}_q^{k \times n - k}$$
 Erasure Codes:

- Random Linear Codes
- Strongly-MDS Codes (Gabidulin'88, Gluesing-Luerssen'06)

$$\mathbf{p}_i = \mathbf{s}_i \cdot \mathbf{H}_0 + \mathbf{s}_{i-1} \cdot \mathbf{H}_1 + \ldots + \mathbf{s}_{i-M} \cdot \mathbf{H}_M, \qquad \mathbf{H}_i \in \mathbb{F}_q^{k \times n - k}$$
 Erasure Codes:

- Random Linear Codes
 - Strongly-MDS Codes (Gabidulin'88, Gluesing-Luerssen'06)

$$\mathbf{p}_i = \mathbf{s}_i \cdot \mathbf{H}_0 + \mathbf{s}_{i-1} \cdot \mathbf{H}_1 + \ldots + \mathbf{s}_{i-M} \cdot \mathbf{H}_M, \qquad \mathbf{H}_i \in \mathbb{F}_q^{k \times n - k}$$
 Erasure Codes:

- Random Linear Codes
 - Strongly-MDS Codes (Gabidulin'88, Gluesing-Luerssen'06)

$$\mathbf{p}_i = \mathbf{s}_i \cdot \mathbf{H}_0 + \mathbf{s}_{i-1} \cdot \mathbf{H}_1 + \ldots + \mathbf{s}_{i-M} \cdot \mathbf{H}_M, \qquad \mathbf{H}_i \in \mathbb{F}_q^{k \times n - k}$$
 Erasure Codes:

- Random Linear Codes
- Strongly-MDS Codes (Gabidulin'88, Gluesing-Luerssen'06)

$$\begin{bmatrix} \mathbf{p}_4 \\ \mathbf{p}_5 \\ \mathbf{p}_6 \\ \mathbf{p}_7 \end{bmatrix} = \underbrace{ \begin{bmatrix} \mathbf{H}_4 & \mathbf{H}_3 & \mathbf{H}_2 & \mathbf{H}_1 \\ \mathbf{H}_5 & \mathbf{H}_4 & \mathbf{H}_3 & \mathbf{H}_2 \\ 0 & \mathbf{H}_5 & \mathbf{H}_4 & \mathbf{H}_3 \\ 0 & 0 & \mathbf{H}_5 & \mathbf{H}_4 \end{bmatrix} }_{\text{full rank}} \begin{bmatrix} \mathbf{s}_0 \\ \mathbf{s}_1 \\ \mathbf{s}_2 \\ \mathbf{s}_3 \end{bmatrix}$$

Streaming Codes - Burst Erasure Channel

N = 1, B = 4, T = 8

Rate 1/2 Baseline Erasure Codes, T=7

Streaming Codes - Burst Erasure Channel

N = 1, B = 4, T = 8

Rate 1/2 Baseline Erasure Codes, T=7

Rate 1/2 Repetition Code, T=8

Burst-Erasure Streaming Codes

N = 1, B = 4, T = 8

$\mathbf{v}_{_{0}}$	$\mathbf{v}_{_{1}}$	$\mathbf{v_2}$	v ₃	$\mathbf{v}_{_{4}}$	v ₅	v ₆	\mathbf{v}_7	v ₈	v ₉	V ₁₀	v ₁₁	v
\mathbf{p}_{0}	p ₁	p ₂	p ₃	P ₄	p ₅	P ₆	p ₇	P ₈	p ₉	p ₁₀	p ₁₁	$\downarrow u$

\mathbf{u}_{0}	u ₁	u ₂	u ₃	u ₄	u ₅	u ₆	u ₇	u ₈	u ₉	u ₁₀	u ₁₁	$\uparrow u$
u ₋₈												

Burst-Erasure Streaming Codes

N = 1, B = 4, T = 8

\mathbf{u}_{0}	u ₁	u ₂	u ₃	u ₄	\mathbf{u}_{5}	\mathbf{u}_{6}	u ₇	u ₈	u ₉	u ₁₀	u ₁₁	u
V ₀	$\mathbf{v_1}$	v ₂	\mathbf{v}_{3}	V ₄	v ₅	v ₆	v ₇	V ₈	V ₉	V ₁₀	v ₁₁	v
$\mathbf{p_0}$	\mathbf{p}_{1}	p ₂	p ₃	P ₄	p ₅	P ₆	p ₇	P ₈	p ₉	p ₁₀	# 11	$\uparrow u$
u ₋₈	u ₋₇	u ₋₆	u 5	u ₋₄	u ₋₃				u ₁	u ₂	u ₃	$\frac{1}{2}u$

$$R = \frac{u+v}{3u+v} = \frac{1}{2}$$

N = 1, B = 4, T = 8

	\mathbf{u}_{0}	u ₁	u ₂	u ₃	u ₄	u ₅	u ₆	u ₇	u ₈	u ₉	u ₁₀	u ₁₁	u	
\mathbf{s}_{i}	V ₀	$\mathbf{v}_{_{1}}$	$\mathbf{v_2}$	v ₃	$\mathbf{v_4}$	v ₅	v ₆	\mathbf{v}_7	v ₈	V ₉	V ₁₀	V ₁₁	v	$\rightarrow \mathbf{x}_{i}$
	\mathbf{p}_{0}	p ₁	p ₂	p ₃	p ₄	p ₅	p ₆	p ₇	p ₈	p ₉	p ₁₀	p ₁₁	u	
	+u ₋₈	+u ₋₇	+u ₋₆	+u ₋₅	+u ₋₄	+u ₋₃	+u ₋₂	+u ₋₁	$+\mathbf{u}_0$	+u ₁	$ +\mathbf{u}_2 $	+ u ₃	↓ ∠	J

$$R = \frac{u+v}{2u+v} = \frac{2}{3}$$

N = 1, B = 4, T = 8

$\int \left \mathbf{u}_0 \right \left \mathbf{u}_1 \right \left \mathbf{u}_1 \right $	$u_3/$	u ₄	u ₅	\mathbf{u}_{6}	u ₇	u ₈	u ₉	u ₁₀	u ₁₁	u	
S_i	2 3	V ₄	V ₅	v ₆	v ₇	V ₈	V ₉	V ₁₀	V ₁₁	Įν	$> X_i$
	/p 3 / u_3	p ₄ + u ₋₄	p ₅ + u ₋₃	p ₆ + u ₋₂	p ₇ + u ₋₁	$\mathbf{p_8} + \mathbf{u_0}$	p ₉ + u ₁	p ₁₀ + u ₂	p ₁₁ + u ₃	$\int_{0}^{\infty} u$	

$$R = \frac{u+v}{2u+v} = \frac{2}{3}$$

- f 1 Split each source symbol into 2 groups ${f s}_i=({f u}_i,{f v}_i)$
- 2 Apply Erasure code to the v_i stream generating p_i parities
- 3 Repeat the \mathbf{u}_i symbols with a shift of T
- 4 Combine the repeated \mathbf{u}_i 's with the \mathbf{p}_i 's

N = 1, B = 4, T = 8

- f 1 Split each source symbol into 2 groups ${f s}_i=({f u}_i,{f v}_i)$
- 2 Apply Erasure code to the \mathbf{v}_i stream generating \mathbf{p}_i parities
- 3 Repeat the \mathbf{u}_i symbols with a shift of T
- 4 Combine the repeated \mathbf{u}_i 's with the \mathbf{p}_i 's

N = 1, B = 4, T = 8

- f 1 Split each source symbol into 2 groups ${f s}_i=({f u}_i,{f v}_i)$
- 2 Apply Erasure code to the v_i stream generating p_i parities
- $oldsymbol{3}$ Repeat the \mathbf{u}_i symbols with a shift of T
- $oldsymbol{\Phi}$ Combine the repeated \mathbf{u}_i 's with the \mathbf{p}_i 's

N = 1, B = 4, T = 8

- f 1 Split each source symbol into 2 groups ${f s}_i=({f u}_i,{f v}_i)$
- 2 Apply Erasure code to the v_i stream generating p_i parities
- 3 Repeat the \mathbf{u}_i symbols with a shift of T
- $oldsymbol{\Phi}$ Combine the repeated \mathbf{u}_i 's with the \mathbf{p}_i 's

N = 1, B = 4, T = 8

- f 1 Split each source symbol into 2 groups ${f s}_i=({f u}_i,{f v}_i)$
- 2 Apply Erasure code to the v_i stream generating p_i parities
- 3 Repeat the \mathbf{u}_i symbols with a shift of T
- $oldsymbol{\Phi}$ Combine the repeated \mathbf{u}_i 's with the \mathbf{p}_i 's

Isolated Erasures

 $N \ge 2$

$$T = 8$$

- Erasures at time t=0 and t=8
- \bullet \mathbf{u}_0 cannot be recovered due to a repetition code

 $N \ge 2$

ſ	\mathbf{u}_{0}	u ₁	u ₂	u ₃	u ₄	u ₅	u ₆	u ₇	u ₈	u ₉	u ₁₀	u ₁₁	u	
ĺ	V ₀	v ₁	v ₂	v ₃	v ₄	v ₅	v ₆	v ₇	V ₈	V ₉	V ₁₀	V ₁₁	v	X .
	P ₀	P ₁	P ₂	P ₃	P ₄	P ₅	P ₆	p ₇	P ₈	P ₉	p ₁₀	p ₁₁	u	
	+u ₋₈	+u ₋₇	+u ₋₆	+u ₋₅	+u ₋₄	+u ₋₃	+u ₋₂	+u ₋₁	$+\mathbf{u}_0$	+u ₁	+u ₂	+u ₃	↓ 丿	
	\mathbf{q}_{0}	q ₁	\mathbf{q}_{2}	q ₃	$\mathbf{q}_{_{4}}$	q ₅	\mathbf{q}_{6}	q ₇	\mathbf{q}_{8}	q ₉	\mathbf{q}_{10}	q ₁₁	$\downarrow k$	

Layered Code Design

- ullet Burst-Erasure Streaming Code $\mathcal{C}_1: (\mathbf{u}_i, \mathbf{v}_i, \mathbf{p}_i + \mathbf{u}_{i-T})$
- ullet Erasure Code: $\mathbf{q}_i = f_i(\mathbf{u}_0, \dots, \mathbf{u}_{i-1}) \in \mathbb{F}_q^k$
- ullet Append \mathbf{q}_i to \mathcal{C}_1 : $(\mathbf{u}_i, \mathbf{v}_i, \mathbf{p}_i + \mathbf{u}_{i-T}, \mathbf{q}_i)$

$$R = \frac{u+v}{2u+v+k}, \qquad k = \frac{N}{T-N+1}B$$

 $N \ge 2$

Layered Code Design

- ullet Burst-Erasure Streaming Code $\mathcal{C}_1: (\mathbf{u}_i, \mathbf{v}_i, \mathbf{p}_i + \mathbf{u}_{i-T})$
- ullet Erasure Code: $\mathbf{q}_i = f_i(\mathbf{u}_0, \dots, \mathbf{u}_{i-1}) \in \mathbb{F}_q^k$
- ullet Append \mathbf{q}_i to \mathcal{C}_1 : $(\mathbf{u}_i, \mathbf{v}_i, \mathbf{p}_i + \mathbf{u}_{i-T}, \mathbf{q}_i)$

$$R = \frac{u+v}{2u+v+k}, \qquad k = \frac{N}{T-N+1}B$$

 $N \ge 2$

Layered Code Design

- ullet Burst-Erasure Streaming Code $\mathcal{C}_1: (\mathbf{u}_i, \mathbf{v}_i, \mathbf{p}_i + \mathbf{u}_{i-T})$
- ullet Erasure Code: $\mathbf{q}_i = f_i(\mathbf{u}_0, \dots, \mathbf{u}_{i-1}) \in \mathbb{F}_q^k$
- ullet Append \mathbf{q}_i to \mathcal{C}_1 : $(\mathbf{u}_i, \mathbf{v}_i, \mathbf{p}_i + \mathbf{u}_{i-T}, \mathbf{q}_i)$

$$R = \frac{u+v}{2u+v+k}, \qquad k = \frac{N}{T-N+1}B$$

 $N \ge 2$

- Burst-Erasure Streaming Code $C_1 : (\mathbf{u}_i, \mathbf{v}_i, \mathbf{p}_i + \mathbf{u}_{i-T})$
- ullet Erasure Code: $\mathbf{q}_i = f_i(\mathbf{u}_0, \dots, \mathbf{u}_{i-1}) \in \mathbb{F}_q^k$
- ullet Append \mathbf{q}_i to \mathcal{C}_1 : $(\mathbf{u}_i, \mathbf{v}_i, \mathbf{p}_i + \mathbf{u}_{i-T}, \mathbf{q}_i)$

$$R = \frac{u+v}{2u+v+k}, \qquad k = \frac{N}{T-N+1}B$$

 $N \ge 2$

Layered Code Design

• Burst-Erasure Streaming Code $C_1 : (\mathbf{u}_i, \mathbf{v}_i, \mathbf{p}_i + \mathbf{u}_{i-T})$

• Erasure Code: $\mathbf{q}_i = f_i(\mathbf{u}_0, \dots, \mathbf{u}_{i-1}) \in \mathbb{F}_q^k$

• Append \mathbf{q}_i to \mathcal{C}_1 : $(\mathbf{u}_i, \mathbf{v}_i, \mathbf{p}_i + \mathbf{u}_{i-T}, \mathbf{q}_i)$

$$R = \frac{u+v}{2u+v+k}, \qquad k = \frac{N}{T-N+1}B$$

 Streaming Codes for Burst Erasure Channel (Block Code + Interleaving): Martinian and Sundberg (IT-2004), Martinian and Trott (ISIT-2007)

- Streaming Codes for Burst Erasure Channel (Block Code + Interleaving): Martinian and Sundberg (IT-2004), Martinian and Trott (ISIT-2007)
- Other Variations of Streaming Codes
 - Unequal Source Channel Rates (Patil-Badr-Khisti-Tan Asilomar 2013, ISIT 2013, Poster)
 - Multicast Extension (Khisti-Singh 2009, Badr-Lui-Khisti Allerton 2010)
 - Parallel Channels (Lui-Badr-Khisti CWIT 2011)
 - Multi-Source Streaming Codes (Lui Thesis, 2011)
 - Lower Field Size for MiDAS Codes (Badr et. al. CWIT 2013)

- Streaming Codes for Burst Erasure Channel (Block Code + Interleaving): Martinian and Sundberg (IT-2004), Martinian and Trott (ISIT-2007)
- Other Variations of Streaming Codes
 - Unequal Source Channel Rates (Patil-Badr-Khisti-Tan Asilomar 2013, ISIT 2013, Poster)
 - Multicast Extension (Khisti-Singh 2009, Badr-Lui-Khisti Allerton 2010)
 - Parallel Channels (Lui-Badr-Khisti CWIT 2011)
 - Multi-Source Streaming Codes (Lui Thesis, 2011)
 - Lower Field Size for MiDAS Codes (Badr et. al. CWIT 2013)
- Connections between Network Coding and Real-Time Streaming Codes (Tekin-Ho-Yao-Jaggi ITA-2012, Leong and Ho ISIT-2012)

- Streaming Codes for Burst Erasure Channel (Block Code + Interleaving): Martinian and Sundberg (IT-2004), Martinian and Trott (ISIT-2007)
- Other Variations of Streaming Codes
 - Unequal Source Channel Rates (Patil-Badr-Khisti-Tan Asilomar 2013, ISIT 2013, Poster)
 - Multicast Extension (Khisti-Singh 2009, Badr-Lui-Khisti Allerton 2010)
 - Parallel Channels (Lui-Badr-Khisti CWIT 2011)
 - Multi-Source Streaming Codes (Lui Thesis, 2011)
 - Lower Field Size for MiDAS Codes (Badr et. al. CWIT 2013)
- Connections between Network Coding and Real-Time Streaming Codes (Tekin-Ho-Yao-Jaggi ITA-2012, Leong and Ho ISIT-2012)
- Tree Codes: Schulman (IT 1996), Sahai (2001), Martinian and Wornell (Allerton 2004), Sukhavasi and Hassibi (2011)

MiDAS \rightarrow (Near) Maximum Distance And Span tradeoff Consider (n,k,m) Convolutional code: $\mathbf{x}_i = \sum_{j=0}^m \mathbf{s}_{i-j} \mathbf{G}_j$

MiDAS \rightarrow (Near) Maximum Distance And Span tradeoff Consider (n,k,m) Convolutional code: $\mathbf{x}_i = \sum_{j=0}^m \mathbf{s}_{i-j} \mathbf{G}_j$

Trellis Diagram - Free Distance

MiDAS \rightarrow (Near) Maximum Distance And Span tradeoff

Consider (n, k, m) Convolutional code: $\mathbf{x}_i = \sum_{j=0}^m \mathbf{s}_{i-j} \mathbf{G}_j$

$$d_T = \min_{\substack{[\mathbf{s}_0, \dots, \mathbf{s}_T] \\ \mathbf{s}_0 \neq 0}} \operatorname{wt} \left(\begin{bmatrix} \mathbf{s}_0 & \dots & \mathbf{s}_T \end{bmatrix} \begin{bmatrix} \mathbf{G}_0 & \mathbf{G}_1 & \dots & \mathbf{G}_T \\ 0 & \mathbf{G}_0 & \dots & \mathbf{G}_{T-1} \\ \vdots & & \ddots & \vdots \\ 0 & & \dots & \mathbf{G}_0 \end{bmatrix} \right)$$

Column Distance in [0.3]

ISIT, 2013 July 9th 2013

MiDAS \rightarrow (Near) Maximum Distance And Span tradeoff Consider (n, k, m) Convolutional code: $\mathbf{x}_i = \sum_{j=0}^m \mathbf{s}_{i-j} \mathbf{G}_j$

Column Distance in [0.3]

$$d_T = \min_{\substack{[\mathbf{s}_0, \dots, \mathbf{s}_T] \\ \mathbf{s}_0 \neq 0}} \operatorname{wt} \left(\begin{bmatrix} \mathbf{s}_0 & \dots & \mathbf{s}_T \end{bmatrix} \begin{bmatrix} \mathbf{G}_0 & \mathbf{G}_1 & \dots & \mathbf{G}_T \\ 0 & \mathbf{G}_0 & \dots & \mathbf{G}_{T-1} \\ \vdots & & \ddots & \vdots \\ 0 & & \dots & \mathbf{G}_0 \end{bmatrix} \right)$$

ISIT, 2013 July 9th 2013

MiDAS → (Near) Maximum Distance And Span tradeoff

Consider (n,k,m) Convolutional code: $\mathbf{x}_i = \sum_{j=0}^m \mathbf{s}_{i-j} \mathbf{G}_j$

Column Span in [0.3]

Column Span: c_T

$$c_T = \min_{\substack{[\mathbf{s}_0, \dots, \mathbf{s}_T] \\ \mathbf{s}_0 \neq 0}} \operatorname{span} \left(\begin{bmatrix} \mathbf{s}_0 & \dots & \mathbf{s}_T \end{bmatrix} \begin{bmatrix} \mathbf{G}_0 & \mathbf{G}_1 & \dots & \mathbf{G}_T \\ 0 & \mathbf{G}_0 & \dots & \mathbf{G}_{T-1} \\ \vdots & & \ddots & \vdots \\ 0 & & \dots & \mathbf{G}_0 \end{bmatrix} \right)$$

ISIT, 2013 July 9th 2013

Column-Distance & Column Span Tradeoff

Theorem

Consider a $\mathcal{C}(N,B,W)$ channel with delay T and $W \geq T+1$. A streaming code is feasible over this channel if and only if it satisfies: $d_T \geq N+1$ and $c_T \geq B+1$

Column-Distance & Column Span Tradeoff

Theorem

Consider a $\mathcal{C}(N,B,W)$ channel with delay T and $W \geq T+1$. A streaming code is feasible over this channel if and only if it satisfies: $d_T \geq N+1$ and $c_T \geq B+1$

Theorem

For any rate R convolutional code and any $T \ge 0$ the Column-Distance d_T and Column-Span c_T satisfy the following:

$$\left(\frac{R}{1-R}\right)c_T + d_T \le T + 1 + \frac{1}{1-R}$$

There exists a rate R code (MiDAS Code) over a sufficiently large field that satisfies:

$$\left(\frac{R}{1-R}\right)c_T + d_T \ge T + \frac{1}{1-R}$$

Simulation Results

Gilbert-Eliott Channel $(\alpha, \beta) = (5 \times 10^{-4}, 0.5), T = 12$ and R = 12/23

Gilbert Elliott Channel

ullet Good State: $\Pr(\mathrm{loss}) = \varepsilon$

• Bad State: Pr(loss) = 1

Simulation Results

Gilbert-Eliott Channel $(\alpha, \beta) = (5 \times 10^{-4}, 0.5), T = 12$ and R = 12/23

Code	N	В	Code	N	В
Strongly MDS	6	6	MiDAS	2	9
Burst-Erasure	1	11			

Simulation Results - II

Gilbert-Eliott Channel $(\alpha, \beta) = (5 \times 10^{-5}, 0.2), T = 50$ and $R \approx 0.6$

Code	N	В	Code	N	В
Strongly MDS	20	20	MiDAS	4	30
Burst-Erasure	1	33	PRC	4	25

Conclusions

- Error Correction Codes for Real-Time Streaming
- Deterministic Channel Models C(N, B, W)
- ullet Tradeoff between achievable N and B
- MiDAS Constructions
- Column-Distance and Column-Span Tradeoff
- Partial Recovery Codes for Burst + Isolated Erasures

Burst plus Isolated Erasures

 $\mathcal{C}_{II}(N,B,W)$ that in a window of length W introduces

- ullet A burst erasure of length B plus one isolated erasure
- ullet Upto N isolated erasures

Burst plus Isolated Erasures

 $\mathcal{C}_{II}(N,B,W)$ that in a window of length W introduces

- A burst erasure of length *B plus* one isolated erasure
- ullet Upto N isolated erasures

Gilbert Elliott Channel

- Good State: $Pr(loss) = \varepsilon$
- Bad State: Pr(loss) = 1

Burst plus Isolated Erasures

 $\mathcal{C}_{II}(N,B,W)$ that in a window of length W introduces

- A burst erasure of length *B plus* one isolated erasure
- ullet Upto N isolated erasures

Partial Recovery Codes

- Layered Construction
- Partial Recovery for burst + isolated patterns