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Abstract—We study sequential streaming of Gauss-Markov
sources over a burst-erasure channel. In any sliding window
of length L, the channel introduces a single erasure burst of
maximum length B. The encoder observes a sequence of vector
Gaussian sources, where the vectors are i.i.d. across the spatial
dimension and correlated across the temporal dimension. The
encoder output can depend on all source vectors observed up to
that time but not on any future source vectors. The decoder
is required to reconstruct the source vectors instantaneously
and within a quadratic distortion constraint of D, except those
source vectors that either appear during the erasure periods
or a recovery period of W following each erasure burst. We
focus on time-invariant encoders and establish upper and lower
bounds on the minimum compression rate R(L,B,W,D). Our
lower bound is obtained by making connection to a Gaussian
multi-terminal source coding problem. The upper bound is based
on distributed source coding, but requires a careful analysis of
the achievable rate. Numerical comparisons indicate that the
proposed technique provides significant gains over other baseline
schemes.

I. INTRODUCTION

A tradeoff between the compression rate and error propa-

gation at the receiver exists in any video coding system. At

one extreme, predictive coding achieves the maximum possible

compression but is highly sensitive to packet losses. At the

other extreme, still image coding does not incur any error

propagation but incurs a significant overhead. A variety of

techniques are used in practice to strike a balance between

these extremes. Common examples include the GOP (group of

pictures) structure, leaky predictive coding, application-layer

error control codes and distributed video coding.

In this paper we study an information theoretic tradeoff

between the compression rate and error propagation for Gauss-

Markov sources. The encoder observes a sequence of vector

sources which are spatially i.i.d. and temporally correlated

according to a Gauss-Markov process. At each time the

encoder generates a channel input which can depend on all the

source vectors observed up to that point, but not on any future

sources. The channel is a burst erasure channel. In any sliding

window of length L, it can introduce one erasure burst of

length no greater than B. In other words, there is a guaranteed

guard interval of length at least L− 1 among multiple erasure

bursts (each of length at most B). All input packets that are

not erased are revealed instantaneously to the receiver. In turn
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Fig. 1. Proposed Model: The channel introduces a burst erasure of maximum
length B in any sliding window of length L. Following each burst and a
recovery period of W the decoder starts reconstructing the source sequences
instantaneously as indicated. by the check marks.

the decoder is required to reconstruct all the source vectors

instantaneously and with a (quadratic) distortion no greater

than D. However any source vector that appears during the

erasure period or within W units following the burst need not

be reconstructed. Therefore W denotes the error propagation

period following the burst. We study the minimum source

coding rate R(L,B,W,D) for this system and call it the

rate-recovery function. In an earlier work, the rate-recovery

function is introduced in reference [1] in the context of lossless

reconstruction. Upper and lower bounds are developed that

match in some special cases. In reference [2], we further

consider an extension to Gauss-Markov sources, but assume

that the channel introduces only a single erasure burst during

the entire period of communication, and that the decoder

is interested in immediate recovery following the burst i.e.,

W = 0. The present work extends this setup by considering a

sliding window erasure channel and any recovery period W .

By taking L → ∞ and W = 0 we recover the results in [2].

The rest of the paper is organized as follows. The problem

setup is described in Section II. Section III and Section IV

provide lower and upper bounds for the lossy rate-recovery

function. Section V provides numerical comparisons with

other schemes.

II. SYSTEM MODEL

We consider a stationary vector source process {snt }, which

is sampled i.i.d. N (0, 1) along the spatial dimension and forms

a first-order Markov chain across the temporal dimension i.e.,

st = ρst−1+nt where ρ ∈ (0, 1) and nt ∼ N (0, 1−ρ2). At any

given time, the channel input accepts an integer valued index
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Fig. 2. Multi-terminal source coding problem as an enhanced version of
original streaming problem.

ft and either outputs gt = ft or gt = ⋆. In the later case we

say that the channel output is an erasure. We will refer to this

model as a packet erasure channel. Furthermore we consider

the class of sliding-window packet erasure channels. In any

window of length L the channel can introduce a single burst

erasure of length up to B. Fig. 1 provides an example of such

a channel with L = 6 and B = 2. Note that the successive

bursts have a guard separation of at-least L− 1 symbols.

A rate-R causal encoder maps the observed sequences up

to time t to an index ft ∈ [1, 2nR] according to some function

ft = Ft

(

snt , s
n
t−1, . . . ,

)

. We will focus on time-invariant

encoders where Ft does not depend on the index t.
Following each erasure burst, the decoder waits for a

recovery period of length W and then is required to reconstruct

the incoming source vectors instantaneously. In an erasure

burst spans the interval i ∈ {j, j + 1, · · · , j + B − 1}
the decoder needs to start recovering source vectors snt for

t ≥ j +B +W until a second erasure burst is encountered.

Each source reconstruction ŝni = G(gi, gi−1, . . . , ) must satisfy

a quadratic distortion of D i.e.,

lim sup
n→∞

1

n

n
∑

k=1

E
[

(si,k − ŝi,k)
2
]

≤ D. (1)

In our set up L ≥ 2, i.e. two consecutive erasure bursts are

separated by at least one non-erased packet. In general we

will assume that W < L − 1, since otherwise no recovery is

possible in some cases. Throughout we will assume that the

system operates in the steady state at t = 0 and consider the

operation for t > 0.

A rate R is achievable if a sequence of encoding functions

F(·) and decoding functions G(·) exist such that the distortion

constraint (1) is satisfied over all permissible channels. We

seek the minimum feasible rate R(L,B,W,D), which we call

(lossy) rate-recovery function.

III. LOWER BOUND

Before stating the general lower bound on R(L,B,W,D),
we consider a special case of B = W = 1. For this case, we

propose a lower bound by exploiting a connection between

the streaming setup and the multi-terminal source coding

problem illustrated in Fig. 2. The encoder observes two

sources snj and snj−1. Decoder j is required to reconstruct

snj within distortion D while knowing snj−1 whereas decoder

j + 1 requires to reconstruct snj+1 within distortion D while

knowing snj−2 and having access to the codewords {fj , fj+1}.

Decoder j resembles a steady state decoder when the previous

source sequence has been reconstructed whereas decoder j + 1
resembles the decoder following an erasure and the associated

recovery period. The proposed multi-terminal setup is different

from the original one in that the decoders are revealed actual

source sequences rather than the encoder output. Nevertheless

the study of this model captures one source of tension inherent

in the streaming setup. When encoding snj we need to simul-

taneously satisfy two requirements: The sequence snj must be

reconstructed within a distortion of D at encoder j. It can

also be used as a helper by decoder j + 1. In general these

requirements can be conflicting. If we set snj−2 = φ then the

setup is reminiscent of zig-zag source coding problem [3].

Of particular interest to us in this section is a lower bound on

the sum-rate. In particular we show that for any D ∈ (0, 1−ρ2)
the following inequality hold:

2R ≥
1

2
log

1− ρ2

D
+

1

2
log

1− ρ6

D
−

1

2
log

1− ρ4

1− (1−D)ρ2

(4)
To show (4), note that

2nR ≥ H(fj , fj+1)

≥ H(fj , fj+1|s
n
j−2) (5)

= I(fj , fj+1; s
n
j+1|s

n
j−2) +H(fj , fj+1|s

n
j−2, s

n
j+1) (6)

≥ h(snj+1|s
n
j−2)− h(snj+1|fj , fj+1, s

n
j−2) +H(fj |s

n
j−2, s

n
j+1)

≥
n

2
log

(

1− ρ6

D

)

+H(fj |s
n
j−2, s

n
j+1) (7)

where (7) follows from the fact that snj+1 must be reconstructed

from (fj , fj+1, s
n
j−2) within distortion D at decoder j+1. The

first term is the minimum rate associated with decoder j + 1.

We next lower bound the second term by using the fact that

fj must also be used by decoder j.

H(fj |s
n
j−2, s

n
j+1) ≥ H(fj |s

n
j−2, s

n
j−1, s

n
j+1) (8)

≥ I(fj ; s
n
j |s

n
j−2, s

n
j−1, s

n
j+1) (9)

= h(snj |s
n
j−1, s

n
j+1)− h(snj |s

n
j−2, s

n
j−1, s

n
j+1, fj) (10)

= nh(s1|s0, s2)− h(snj |s
n
j−2, s

n
j−1, s

n
j+1, fj) (11)

≥
n

2
log

(

2πe
(1− ρ2)2

(1− ρ4)

)

− h(snj |s
n
j−2, s

n
j−1, s

n
j+1, fj) (12)

One direct way to upper bound the last term in (12) is to use

the fact that sj can be reconstructed within distortion D using

(fj , sj−1). Thus by ignoring the fact that sj+1 is also available,

one can find the upper bound as follows.

h(snj |s
n
j−2, s

n
j−1, s

n
j+1, fj) ≤ h(snj |s

n
j−1, fj) (13)

≤
n

2
log (2πeD) (14)

However knowing sj+1 can provide an extra observation to

improve the estimation of sj as well as the upper bound in

(14). In particular, we can show that

h(snj |s
n
j−2, s

n
j−1, s

n
j+1, fj) ≤

n

2
log

(

D(1− ρ2)

1− (1−D)ρ2

)

(15)

Note that the upper bound in (15) is strictly tighter than (14),



R =
1

2(W + 1)
log

(

ρ2(B+W+1)G(L,B, ρ,R) + 2πe(1− ρ2(B+W+1))

2πeD

)

(2)

+
1

2(W + 1)
log





(2−2Rρ2)Bρ2G(L,B, ρ,R) + 2πe(1− ρ2) 1−(2−2Rρ2)B+1

1−2−2Rρ2

2πe(1− (1−D)ρ2(W+1))

(

1− (1−D)ρ2

D

)W




G(L,B, ρ,R) =
2πe

22R − ρ2(B+1)(ρ22−2R)(L−2)

(

(1− ρ2)(1− (ρ22−2R)(L−2))

(1− ρ22−2R)
+ (1− ρ2(B+1))(ρ22−2R)(L−2)

)

(3)

as the following inequality always holds.
D(1− ρ2)

1− (1−D)ρ2
≤ D. (16)

To show (15), note that

h(snj |s
n
j−2, s

n
j−1, s

n
j+1, fj)

= h(snj , s
n
j+1|s

n
j−2, s

n
j−1, fj)− h(snj+1|s

n
j−2, s

n
j−1, fj)

= h(snj |s
n
j−2, s

n
j−1, fj)− h(snj+1|s

n
j−2, s

n
j−1, fj) + h(snj+1|s

n
j )

= h(snj |s
n
j−2, s

n
j−1, fj)− h(snj+1|s

n
j−2, s

n
j−1, fj)

+
n

2
log

(

2πe(1− ρ2)
)

≤
n

2
log

(

D

1− (1−D)ρ2

)

+
n

2
log

(

2πe(1− ρ2)
)

(17)

where the first term in (17) follows from the fact that at

decoder j, snj is reconstructed within distortion D knowing

{snj−1, fj} and hence

h(snj |s
n
j−2, s

n
j−1, fj) ≤ h(snj |s

n
j−1, fj) ≤

n

2
log(2πeD). (18)

and using the Lemma 1 stated below. Eq. (4) follows

from (7), (12) and (17).

Lemma 1. Assume sa ∼ N(0, 1) and sb = ρmsa + n for

n ∼ N(0, 1 − ρ2m). Also assume the Markov chain property

fa → sa → sb. If h(sa|fa) ≤
1
2 log(2πer), then

h(sa|fa)− h(sb|fa) ≤
1

2
log

(

r

1− (1− r)ρ2m

)

(19)

Proof. First note that for any ρ ∈ (0, 1) and x ∈ R the function

f(x) = x−
1

2
log

(

ρ2m22x + 2πe(1− ρ2m)
)

(20)

is an monotonically increasing function with respect to x,

because

f ′(x) =
2πe(1− ρ2m)

ρ2m22x + 2πe(1− ρ2m)
> 0. (21)

By applying Shannon’s EPI we have.

h(sb|fa) ≥
1

2
log

(

ρ2m22h(sa|fa) + 2πe(1− ρ2m)
)

(22)

and thus,

h(sa|fa)− h(sb|fa)

≤ h(sa|fa)−
1

2
log

(

ρ2m22h(sa|fa) + 2πe(1− ρ2m)
)

(23)

≤
1

2
log(2πer)−

1

2
log

(

ρ2m2πer + 2πe(1− ρ2m)
)

(24)

=
1

2
log

(

r

1− (1− r)ρ2m

)

(25)

where (24) follows from the assumption that h(sa|fa) ≤
1
2 log(2πer) and the monotonicity property of f(x). This

completes the proof.

In our original streaming setup this bound can be tightened

by noting that the side information to the decoders in Fig. 2 are

actually encoder outputs rather than the true source sequences.

Details are omitted to preserve space.

Theorem 1 (Lower Bound on Rate-Recovery Function). For

the class of time-invariant encoders, the lossy rate-recovery

function satisfies R(L,B,W,D) ≥ R−(L,B,W,D), where

R−(L,B,W,D) is the solution to (2) and (3) on the top of

the page with respect to R. �

Fig. 3 illustrates an example of the source sequences

and erasure burst introduced by the channel. The term
n
2 logG(L,B, ρ,R) in (3) is the lower bound for the differ-

ential entropy of the source sequence snp+L−B given all the

available codewords up to time p + L − B. The two terms

in (2) correspond to the two terms in (7) when the source

sequences are replaced with encoder outputs.

At high resolution regime, D → 0, we have the following

corollary.

Corollary 1 (High Resolution Regime). In high resolution

regime when D → 0 the lossy rate-recovery function satisfies

the following.

∆R−
HR ≤

(

R(L,B,W,D)−
1

2
log

(

1− ρ2

D

))

≤ ∆R+
HR

∆R+
HR ,

1

2(W + 1)
log

(

1− ρ2(B+1)

1− ρ2

)

+ o(D) (26)

∆R−
HR ,

1

2(W + 1)
log

(

1− ρ2(B+W+1)

1− ρ2(W+1)

)

+ o(D) (27)

where limD→0 o(D) = 0.

Note that the term 1
2 log

(

1−ρ2

D

)

is the rate of the predictive

coding scheme for an ideal channel. Eq. (27) is the minimum

additional rate incurred in any time-invariant scheme to com-

pensate the effect of packet loss of the channel. Eq. (26) is

additional rate for a specific scheme we study in the next

section. Note that the upper and lower bound coincide in high

resolution when W = 0 and W → ∞. Also it can be observed

that the high resolution results do not depend on L. This is

based on the fact that the reconstruction sequences are very

close the actual source so that from the Markov property of

the source sequences nearly applies.

IV. UPPER BOUND: CODING SCHEME

Our proposed coding scheme is based on quantization-

binning technique of distributed source coding. We fix the test

channel as

ut = αst + zt. (28)
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Fig. 3. Recovery of source sequences at the decoder (p = L+B − 1).

where the noise zt ∼ N (0, σ2) is independent of all other

source symbols and α is a constant. We define x = α2/σ2 to

be the signal-to-noise-ratio (SNR) of the test channel. We will

specify x in the sequel.

The codebook Ct contains 2nRs codewords sampled i.i.d.

from N (0, 1) where Rs = I(ut; st) + ε. Each codebook is

partitioned into 2nR bin indices where the rate R will be

defined in this sequel. The codebooks and the partitions are

revealed to both the encoder and the decoder. Given a source

sequence snt the encoder finds a sequence unt ∈ Ct such that

(snt , u
n
t ) ∈ T n

ε (st, ut). The encoder furthermore sends the

bin index associated to unt through the channel. The decoder

collects all the channel outputs and at any time t attempt to

perform the following two steps.

• The decoder attempts to decode the underlying codeword

unt having access to all non-erased channel outputs up to

time t.
• The decoder generate ŝnt , the MMSE estimate of snt

knowing all the successfully recovered codewords uj up

to time t.

If the decoder fails in the first step, it keeps collecting the

channel outputs as time goes on, until it succeeds in jointly

recovering a set of codewords. For a fixed rate R, a natural

tradeoff thus arises between the mentioned steps as follows. At

one extreme, if the encoder applies a fine quantizer which is

equivalent to the test channel with large SNR and equivalently

large Rs, the decoder has to collect more channel outputs in

order to succeed in recovering the underlying codewords in the

first step. However, after that the decoder recovers the code-

words, it can reproduce more accurate estimate of the source

sequences. On the other extreme, applying course quantizer

with smaller SNR in the test channel, makes the recovery of

the underlying codewords easy, however the MMSE estimator

may fail in reproducing the source sequences within a specific

average distortion. In general, the choice of the SNR of the

test channel, x ∈ (0,∞), tries to balance this tradeoff.

The following theorem characterizes an achievable rate.

Theorem 2 (Achievability). The lossy rate-recovery function

satisfies R(L,B,W,D) ≤ R+(L,B,W,D) where

R+(L,B,W,D) = Ψ(L,B,W,D, x)

,
1

W + 1
I(s2L+B+W

2L+B ; u2L+B+W
2L+B |ŝL+W+1, u

2L−1
L+W+2) (29)

where the auxiliary variables u are defined in (28)

and ŝL+W+1 is conditionally independent of
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Fig. 4. Rate versus D for L = 5, B = 2 and W = 2.

all other random variables given sL+W+1 and

(ŝL+W+1, sL+W+1) are jointly Gaussian random variables

with E
[

(ŝL+W+1 − sL+W+1)
2
]

= D.

Furthermore if ŝ2L+B+W is the linear mini-

mum mean squared estimate of s2L+B+W given

{ŝL+W+1, u
2L−1
L+W+2, u

2L+B+W
2L+B } and γ(L,B,W, x) =

E[(ŝ2L+B+W − s2L+B+W )2] is the associated estimation

error, then x is selected to satisfy γ(L,B,W, x) = D. �

There are two key ideas in proving Theorem 2. First is the

fact that the worse-case erasure pattern is the periodic erasure

pattern where the packets in the interval [kp+L−B+1, kp+L]
are erased for any k, where p = L + B − 1. The erasure

pattern for k = 1 is shown in Fig. 3. The second idea is

that the worse-case codeword recovery happens at the end

of the recovery period. In fact, (29) corresponds to the rate

required for the recovery of such a source sequence, where

[2L, 2L + B − 1] denotes an erasure burst of length B,

[2L+B, 2L+B +W ] denotes the recovery period, ŝL+W+1

denotes the reconstructed source sequence within the distortion

D and u2L−1
L+W+2 denotes the codewords recovered before the

erasure. The detailed proof of the theorem is omitted.

Fig. 4 and Fig. 5 show the upper and lower bounds of

Theorems 1 and 2 as a function of D and ρ, respectively.

V. NUMERICAL RESULTS AND COMPARISONS

A. Comparison with Baseline Schemes

In this section, we briefly discuss some other schemes that

can be used in the proposed setup.

1) Still Image Compression: In this scheme, the encoder

ignores the decoder’s memory and at time t ≥ 0 encodes the

source sni in a memoryless manner and sends the codewords

through the channel. The rate associated to this scheme is

RSI = I(st; ut) = 1/2 log (1/D). In this scheme, the decoder

is able to recover the source whenever its codeword is avail-

able, i.e. at all the times except when the erasure happens.
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2) Source-Channel Separation-Based Scheme: This scheme

consists of predictive coding followed by a Forward Error

Correction (FEC) code to compensate the effect of packet

losses of the channel. As B erased source packets need to

be recovered using the W + 1 available channel packets, the

rate achieved is

RFEC =
B +W + 1

W + 1
R+(L,B = 0,W = 0, D) (30)

=
B +W + 1

2(W + 1)
log

(

1− (1−D)ρ2

D

)

. (31)

Fig. 6 shows the rate performance of these sub-optimal

systems as well as lower and upper bounds on optimal lossy

rate-recovery function as a function of waiting time W . It

can be seen that the rate achieved by the proposed coding

scheme is less than both the still image compression and

source-channel separation-based scheme for all the range of

W . Also it is interesting that changing W from 0 to 1, i.e.

waiting for a single time slot, noticeably reduces the required

rate.

B. Simulation results for Gilbert Channel Model

In this section we consider the two-state Gilbert channel

model in which no packet is lost in “good state” and all the

packets are lost in “bad state”. Let αG and βG denote the

probability of transition form “good” to “bad” state and vice

versa. The probability of being in “bad state” and thus the

erasure probability is αG

αG+βG
. We simulated the compression

of the Gauss-Markov source sequences with ρ = 0.7 over

Gilbert erasure channel model with αG = 0.005 and βG = 0.1.

Fig. 7 shows the performance of source-channel separation-

based scheme introduced in V-A2 and the scheme proposed

in this paper. In the latter, we tuned the SNR for test channel

for each average rate. The probability of loss is defined as

the probability of the event that the decoder is not able to

reconstruct the source sequences within a specific distortion

(D = 0.2 in this simulation). It can be observed that the

proposed scheme outperforms the traditional scheme based

on source-channel separation. Also the probability of loss
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Fig. 6. Comparison of rate-recovery of sub-optimal systems to Upper and
Lower bounds of lossy rate-recovery function for L = 8, B = 2, ρ = 0.7

and D = 0.2.
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Fig. 7. Probability of l5ss versus the average rate over Gilbert channel model.
The proposed scheme outperforms the traditional source-channel separation-
based scheme.

saturates to the erasure probability of the underlying Gilbert

Channel as R increases , i.e. the decoder only misses those

sources whose packets are lost by the channel. As future work,

it will be interesting to draw connections between lossy-rate

recovery function and the associated code parameters used on

the Gilbert channel.
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