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Abstract—The column Hamming distance of a convolutional
code determines the error correction capability when streaming
over a class of packet erasure channels. We introduce a metric
known as the column sum rank, that parallels column Hamming
distance when streaming over a network with link failures.
We prove rank analogues of several known column Hamming
distance properties and introduce a new family of convolutional
codes that maximize the column sum rank up to the code
memory. Our construction involves finding a class of super-
regular matrices that preserve this property after multiplication
with non-singular block diagonal matrices in the ground field.

Index Terms—Column distance, maximum rank distance
(MRD) codes, network coding, super-regular matrices,
maximum-distance profile (MDP) codes.

I. INTRODUCTION

In streaming communication, source packets arrive sequen-
tially at the transmitter and are only useful for playback
by the receiver in the same order. Erased packets must be
recovered within a given maximum delay or be considered
permanently lost. Streaming codes recover packets within
these decoding deadlines and have previously been studied
for single-link communication [2]–[5]. The works referenced
in [2]–[4] focused primarily on low-delay recovery against
burst losses, which are the predominant erasure patterns in
Internet streams [6]. Alternatively, [4], [5] considered coding
for channels with arbitrary erasure patterns, restricting only the
number of erasures in a window. It was shown that the column
Hamming distance determines the maximum tolerable number
of erasures that can occur in any window of the stream for
decoding to remain successful. If there are fewer erasures than
the distance in every sliding window, each source symbol is
recovered within a given delay. A family of memory m convo-
lutional codes, known as m-Maximum Distance Separable (m-
MDS) codes, attain the maximum column Hamming distance
up to the code memory. Furthermore, these are constructed
from block Toeplitz super-regular matrices [5], [7]–[9]. These
codes can also be used as constituent codes in the construction
of optimal burst error correction codes for streaming systems
[4].

Suppose that a transmitter sends packets to several users
through a series of intermediate nodes. Using generation-based
linear network codes, the problem of decoding is reduced to
inverting the channel transfer matrix between the transmitted
and received packets [10]–[12]. If links in the network fail
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to transmit packets for a given time instance, the rank of the
channel matrix decreases, making packet recovery infeasible.
One solution is to use end-to-end schemes to precode chan-
nel packets before transmission. Rank metric codes such as
Gabidulin codes [13], [14] are capable of protecting packets in
rank-deficient channels. The minimum rank distance of a code
determines the maximum permissible rank loss in a channel
matrix. This method can be considered for single-shot network
coding [15], [16] or for multishot extensions [17], [18].

In this work we study a streaming setup that extends the
single-link model of [2]–[4] to a network. We assume that
the intermediate nodes implement linear network coding and
produce a channel transfer matrix relating the transmitted and
received packets. To combat link failures, the source stream
is further precoded at the source using a streaming code. We
define a new metric, the column sum rank and introduce a new
family of convolutional codes that attain the maximum value
for this metric. These are rank metric analogues of m-MDS
codes [7]. Just as the column Hamming distance determines
the maximum allowable number of erasures in single link
streaming, we show that the column sum rank determines the
maximum rank deficiency of the channel. Interestingly, there
has been little prior work on rank metric convolutional codes.
To our knowledge, the only previously studied construction
appears in [18], where the authors consider the active column
sum rank as the metric of importance. Consequently, their
approach and results differ from the present work both in the
code constructions and applications.

This paper is outlined as follows. The network streaming
problem is introduced in Section II. We provide an overview
of rank metric block codes and m-MDS codes in Section
III. The column sum rank is defined in Section IV, where
we derive several properties and establish their relevance in
network streaming. Codes that maximize the column sum
rank are referred to as Maximum Sum Rank (MSR) codes.
We introduce a class of super-regular matrices in Section V
that preserve super-regularity after multiplication with block
diagonal matrices in the ground field and use these to construct
an MSR code in Section VI. We conclude this paper with code
examples and a discussion on the necessary field size.

II. NETWORK STREAMING PROBLEM

The streaming problem is defined in three steps: the encoder,
network model, and decoder. Encoding is performed in a
causal fashion, as the incoming packets are not known until
the time at which they must be transmitted. A linear network
code has been applied to the network and each node receives
and sends linear combinations of the symbols in the channel
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packet. Consequently the network is abstracted to a channel
matrix, which is assumed to be known to the receiver [12].
The decoder observes linear combinations of the symbols in
each transmitted packet and must recover the source within
the imposed deadline.

A. Encoder

Let q be a prime power and M ≥ 0. At each time instance
t ≥ 0, a source packet st ∈ FkqM arrives at the transmitter
node. A channel packet xt ∈ FnqM is constructed via a causal
function of the previous source packets γt(s0, . . . , st). We
consider the class of linear time invariant encoders. A rate
R = k

n encoder with memory m generates the channel packet

xt =

m∑
i=0

st−i ·Gi, (1)

using a set of generator matrices Gi ∈ Fn×k
qM

for 0 ≤ i ≤ m.

B. Network Model

The transmitter node sends one channel packet through the
network at each time instance. Although there is a natural
delay in the end-to-end transmission due to link delays, we
assume that such delays are sufficiently small so that one time
instance contains the encoding, transmission, and decoding of
a single channel packet1. The transmission of a single channel
packet over one time instance is referred to as a shot. In
each shot, the destination node observes yt = xtAt, where
At ∈ Fn×nq is the channel matrix at time t, and is known
to the receiver. In practice, the coefficients for the linear
transformations applied by each node can be encoded into
header bits, which the receiver uses to reconstruct the channel
matrix [12].

Each shot is independent of all others. Communication over
a window [t, t + W − 1] of W shots is described using
y[t,t+W−1] = x[t,t+W−1]A[t,t+W−1], where A[t,t+W−1] =
diag (At, . . . ,At+W−1) is a block diagonal channel matrix
[17], [19]. Let ρt

∆
= rank (At) denote the rank of At, for all

t ≥ 0. The sum of the ranks of the individual channel matrices
is equal to the rank of the channel matrix in the window,
i.e.,

∑t+W−1
i=t ρi = rank (A[t,t+W−1]). Suppose that at any

time instance, a link in the network may fail to transmit its
intended symbol. Intermediate nodes that do not receive an
intended symbol simply do not include that symbol in the
linear combination they transmit. If all links are functional in
the shot at any time t, then ρt = n, but failing links may result
in a rank-deficient channel matrix at that time. One failing link
can eliminate at most one of the min-cut paths connecting the
transmitter and receiver. It follows that rank (At) is reduced
by at most 1 for every failing link [20]. We introduce a sliding
window model to characterize rank deficiencies in the network.

Definition 1. Consider a network where for all t ≥ 0,
the receiver observes yt = xtAt, with ρt

∆
= rank (At). The

1For example in audio streaming, coded speech packets are generated once
every 20 ms. When the propagation delays are much smaller than this value,
they can be ignored.

Rank-Deficient Sliding Window Network CH(S,W ) has the
property that in any sliding window of length W , the rank of
the block diagonal channel decreases by no more than S, i.e.,∑t+W−1
i=t ρi ≥ nW − S for each t ≥ 0.

In analysis, we disregard the linearly dependent columns
of the channel matrix and the associated received symbols.
At each time instance, the receiver effectively observes y∗t =
xtA

∗
t , where A∗t ∈ Fn×ρtq contains only the linearly indepen-

dent columns of At and is referred to as the reduced channel
matrix.

Remark 1. A sliding window model has been used in prior
works on delay-constrained coding over single-link channels
[4], [21]. In these works, the channel is adversarially permitted
to erase symbols in each channel packet up to a maximum
number of erasures within each sliding window. The Rank-
Deficient Sliding Window Network can be viewed as an
extension of this model, where the channel introduces rank
deficiencies rather than erasures.

C. Decoder

Let T be the maximum delay permissible by the receiver
node. A packet received at time t must be recovered by
time t + T using a delay-constrained decoder, i.e., ŝt =
ηt(y0, . . . ,yt+T ) is the reconstructed packet. If the decoded
source packet ŝt is equal to st, then the source packet is
perfectly recovered by the deadline; otherwise, it is declared
lost. A linear code C over FqM is defined as feasible for
CH(S,W ) if the encoding and decoding functions for the
code are capable of perfectly recovering every source packet
transmitted over the channel with delay T .

In this paper we will assume that the window length satisfies
W = T + 1. A source packet st must be decoded by time
t+T at the receiver. Thus its active duration spans the interval
[t, t + T ], which maps to a window length of W = T + 1.
Nevertheless, we will also discuss how our codes can handle
the case when W 6= T + 1.

Our objective in this paper is to construct codes that
guarantee recoverability under the worst channel conditions
for a fixed delay and rate, i.e., identifying the largest rank
deficiency S for which a code with a given rate is feasible.
Towards this end, we introduce a new metric called the column
sum rank distance of a convolutional code. We show that it
is both a necessary and sufficient metric to determine the
maximum rank deficiency from which the code guarantees
perfect recovery. Thus, maximizing S reduces to finding codes
with maximum column sum rank distance over the interval
[0, T ].

Codes which achieve the maximum column sum rank
distance will be referred to as Maximum Sum Rank (MSR)
codes in this paper. Furthermore the column sum rank distance
possess a profile property. Achieving the maximum distance at
one point implies that it is also maximized at all points before
it. Operationally we show that this property guarantees that the
product of the generator matrix with elements of a specific set
of channel matrices is full-rank. Finally we propose a family of
super-regular matrices that permit this multiplication property
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of the generator matrix, which we then use to construct MSR
codes. Our proposed family of codes uses the properties of
rank metric block codes and m-MDS convolutional codes,
which are introduced as preliminaries in the following section.

III. BACKGROUND

A. Rank Metric Codes

Consider a vector x ∈ FnqM over the extension field. We
refer to x as a channel packet. The vector x over the extension
field is isomorphic to an n×M matrix over the ground field
Fq . Formally, a bijective mapping φn : FnqM → Fn×Mq allows
for the conversion of this vector to a matrix over the ground
field. We more thoroughly detail this mapping in Appendix A.
Noting that a normal basis can describe every element in the
extension field, the elements of FqM are mapped to linearized
polynomials evaluated at a normal element, whose coefficients
form column vectors. A row vector in FnqM then maps to a
matrix whose columns are the coefficients of the corresponding
linearized polynomials.

The rank of x is defined as the rank of its associated matrix
φn(x). The rank distance between any two vectors x, x̂ ∈ FnqM
is defined as

dR(x, x̂) , rank (φn(x)− φn(x̂)).

The rank distance is a metric and is upper bounded by the
Hamming distance [13]. For any linear block code C[n, k] over
FqM , the minimum rank distance is defined as the smallest
rank amongst all non-zero channel packets. Similar to the
minimum Hamming distance, the minimum rank distance of
a code must satisfy a Singleton-like bound, i.e., dR(C) ≤
min

{
1, Mn

}
(n− k) + 1 [13]. We simplify the notation when

C is obvious. It is assumed that M ≥ n from here on; dR
is then bounded exactly by the classic Singleton bound. Any
code that meets this bound with equality is referred to as a
Maximum Rank Distance (MRD) code. Such codes possess
the following property.

Theorem 1 (Gabidulin, [13]). Let G ∈ Fk×n
qM

be the generator
matrix of an MRD code. The product of G with any full-rank
matrix A ∈ Fn×kq satisfies rankGA = k.

A complementary theorem was proven in [13] for the parity-
check matrix of an MRD code. We use the equivalent generator
matrix property, which arises from the fact that the dual of an
MRD code is also an MRD code [13].

Gabidulin codes are an important family of MRD codes. To
construct a Gabidulin code, let g0, . . . , gn−1 ∈ FqM be a set of
elements that are linearly independent over Fq . The generator
matrix for a Gabidulin code C[n, k] is given by

G =


g0 g1 . . . gn−1

g
[1]
0 g

[1]
1 . . . g

[1]
n−1

...
...

. . .
...

g
[k−1]
0 g

[k−1]
1 . . . g

[k−1]
n−1

 .

where we use the notation g[j]∆=gq
j

to denote the j-th Frobe-
nius power of g ∈ FqM (see Appendix A). Gabidulin codes
can be applied directly as end-to-end codes over networks

where a channel matrix A ∈ Fn×nq transforms symbols of
the transmitted channel packet [16], [19]. For a source packet
s ∈ FkqM encoded by a Gabidulin code, a receiver observes
y = sGA. By Theorem 1, the product GA is an invertible
matrix as long as rankA ≥ k.

B. The Column Hamming Distance

Let C[n, k,m] be a linear time-invariant convolutional code,
where m is the code memory. For a source packet sequence
s[0,j] = (s0, . . . , sj) ∈ Fk(j+1)

qM
, the channel packet sequence2

x[0,j] = s[0,j]G
EX
j is determined using the extended form

generator matrix

GEX
j ,


G0 G1 . . . Gj

G0 . . . Gj−1

. . .
...

G0

 , (2)

where Gj ∈ Fk×n
qM

and Gj = 0 for j > m [22, Chapter 1].
We assume from here on that G0 always has full row rank.
This guarantees that GEX

j also possesses full row rank, which
is a property used in subsequent results.

The Hamming weight of x[0,j] is a sum of the Hamming
weight of each channel packet xt for 0 ≤ t ≤ j. The j-th
column Hamming distance of a convolutional code is defined

dH(j) , min
x[0,j]∈C,s0 6=0

wtH(x[0,j]),

as the minimum Hamming weight amongst all channel packet
sequences for which the initial source packet s0 is non-
zero [7], [23]. Note that because G0 is full-rank, s0 6= 0
immediately implies that x0 6= 0 as well.

Several properties pertaining to the column Hamming dis-
tance were treated in [5], [7]. We summarize two relevant ones
below. In Section IV, we prove analogous properties to these
for the rank metric.

Property 1 (Tomas et al., [5]). Consider an erasure channel
being used for each t ≥ 0, where the prior source sequence
s[0,t−1] is known to the decoder by time t+ j. If there are at
most dH(j)− 1 symbol erasures in the window [t, t+ j], then
st is recoverable by time t + j. Conversely, there is at least
one hypothetical channel window [t, t + j] containing dH(j)
erasures for which st is not recoverable by time t+ j.

Property 1 states that for sliding window erasure channels
featuring windows of length W , a convolutional code with
column Hamming distance dH(W − 1) can guarantee perfect
decoding with delay W − 1, provided that there are less than
dH(W − 1) erasures in the window [4].

Property 2 (Gluessing-Luerssen et al., [7]). The j-th column
Hamming distance of a code is upper bounded by a Singleton-
like bound, i.e., dH(j) ≤ (n−k)(j+1)+1. If dH(j) meets this
bound with equality, then dH(i) meets its respective bound for
all i ≤ j.

2In network coding literature, each xt ∈ Fn
qM

is referred to as a generation
of n channel packets. We denote xt as a channel packet containing n symbols
and x[t,t+j] as a sequence of j packets. Similar notation is used for the
source.
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This property asserts a convolutional code extension of the
Singleton bound. The desirability of achieving large column
Hamming distances is given in the previous Property 1. In
conjunction with this, a code capable of recovering from
dH(j) − 1 erasures with delay j can be shown to be further
capable of the respective maximum recovery for all i ≤ j.

There exist several families of codes which achieve the
maximum dH(j) for some given j [7], [8], [24]. One such
class of codes are m-MDS codes. These achieve the upper
bound up to the code memory i.e., dH(j) = (n−k)(j+1)+1
for 0 ≤ j ≤ m. The MSR codes, which we introduce in
this work, are rank metric analogues of m-MDS codes. One
approach to constructing the generator matrix of m-MDS
codes is by taking a sub-matrix of k(m + 1) rows from a
block Toeplitz super-regular matrix [7]. A prior construction
of a block Toeplitz super-regular matrix was given in [9]. As
this construction is modified for our purposes, we include a
summary of this construction in Section V, as well as a review
of super-regular matrices in Appendix A.

C. The Active Column Sum Rank Distance

Let C[n, k,m] be a linear time-invariant convolutional code
over FqM , whose codewords are generated using (2). The
active column sum rank distance is a metric for convolutional
codes that was proposed in a prior work [18]. This metric is
defined using the state Trellis graph of the convolutional code.
Let Caj be the set of all channel packet sequences x[0,j] that
are constructed by exiting the zero-state of the Trellis at time
0 and not re-entering it for 1 ≤ t ≤ j − 1. The j-th active
column sum rank of a linear convolutional code C[n, k,m] is
then defined as as the minimum sum rank of all channel packet
sequences in Caj , i.e.,

daR(j) , min
x[0,j]∈Caj

j∑
t=0

rank (φn(xt)),

where φn(·) is the previously introduced mapping from vectors
in the extension field to matrices in the ground field in
Section III-A.

Note that by restricting itself to only consider channel
packet sequences in Caj , the active column sum rank of a
convolutional code does not impose any guarantees on the sum
rank of any channel packets that enter the zero state before
time j. An example of such a sequence is provided in Fig. 1.
Consequently, the active column sum rank is not a sufficient
metric to guarantee delay-constrained decoding over a sliding
window channel, as we show in the next section.

IV. THE COLUMN SUM RANK DISTANCE

Let C[n, k,m] be a linear time-invariant convolutional code
over FqM , constructed in the same manner as in the previous
section. We introduce the j-th column sum rank distance of a
code

dR(j) , min
x[0,j]∈C,s0 6=0

j∑
t=0

rank (φn(xt)),

as an analogue of the column Hamming distance. Unlike the
j-th active column sum rank distance, this metric permits
returning to the zero-state before time j. For example, the
channel packet sequence generated in Fig. 1 is valid for
the column sum rank distance. As a result, this metric is
stronger than the active version, i.e., dR(j) ≤ daR(j). In the
following theorem, we show that the column sum rank distance
of a convolutional code is both necessary and sufficient to
guarantee low-delay decoding over CH(S,W ).

Theorem 2. Let C[n, k,m] be a convolutional code used over
the window [0,W − 1]. For 0 ≤ t ≤ W − 1, let A∗t ∈ Fn×ρtq

be full-rank matrices and A∗[0,W−1] = diag (A∗0, . . . ,A
∗
W−1)

be a channel matrix. The following statements are true:

1) If dR(W − 1) > nW −
∑W−1
t=0 ρt, then s0 is always

recoverable by time W − 1.
2) If dR(W − 1) ≤ nW −

∑W−1
t=0 ρt, then there exists at

least one channel packet sequence and channel matrix for
which s0 is not recoverable by time W − 1.

Proof: Due to code linearity, we only need to show that
all output channel packet sequences are distinguishable from
the all-zero sequence. We prove this by contradiction. Consider
a source packet sequence s[0,W−1] = (s0, . . . , sW−1), where
s0 6= 0. Suppose that this sequence generates the channel
packet sequence x[0,W−1], for which x[0,W−1]A

∗
[0,W−1] = 0.

This implies that rank (φn(xt)) ≤ n− rank (A∗t ) for 0 ≤ t ≤
W − 1. By summing each of the inequalities, we arrive at the
following contradiction on the sum rank of the channel packet
sequence:

W−1∑
t=0

rank (φn(xt)) ≤ nW −
W−1∑
t=0

ρt

< dR(W − 1).

For the converse, let s[0,W−1] = (s0, . . . , sW−1), with
s0 6= 0 be a source packet sequence that maps to x[0,W−1],
for which

∑W−1
t=0 rank (φn(xt)) = dR(W − 1). For 0 ≤ t ≤

W − 1, let ρt = n − rank (φn(xt)). There exist matrices
A∗t ∈ Fn×ρtq such that each xtA

∗
t = 0. We let A∗[0,W−1] =

diag (A∗0, . . . ,A
∗
W−1) be the channel matrix. Summing all

of the ρt reveals rank (A∗[0,W−1]) = nW − dR(W − 1).
Furthermore, s[0,W−1] is indistinguishable from the all-zero
source packet sequence over this channel.

Remark 2. The constraint that s0 6= 0 is necessary in
order to differentiate the first source packet from the all-
zero source packet. Note however, that there is no necessary
constraint on the state Trellis transitions; any non-zero source
packet sequence should be differentiable from the all-zero
sequence. Using the active column sum rank in place of the
column sum rank in the above Theorem then leads to a partial
guarantee. If x[0,W−1] ∈ CaW−1, then the active column sum
rank determines the maximum rank deficiency in the channel
from which the first source packet is recoverable. However,
if x[0,W−1] /∈ CaW−1, then the W − 1-th active column
sum rank does not provide any guarantees on recoverability.
Consequently, we view the active column sum rank as an over-
estimate of the recovery capability of the code.
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Fig. 1: A hypothetical transition along the state Trellis graph is highlighted. The active column sum rank distance daR(5) does
not guarantee the sum rank of the channel packet sequence generated by this path, i.e., x[0,5] /∈ Ca5 . In this work, we introduce
the column sum rank, which does consider this channel packet sequence.

For time-invariant encoders, Theorem 2 can be used to
guarantee that all source packets are recovered with delay
at most W − 1 over a sliding window channel. Assuming
all prior packets have been decoded, we recover each st
using the window [t, t+W − 1]. The contributions of s[0,t−1]

can be negated from the received packet sequence used for
decoding. Theorem 2 is then effectively a rank metric analogue
to Property 1 from Section III-B, which describes how column
Hamming distance bounds the number of tolerable erasures in
single-link streaming [5].

Remark 3. Aside from rank-deficient channel matrices, adver-
sarial errors can also be considered using rank metric codes.
Consider a single-link single-shot system where the receiver
observes y = x + e, with e ∈ FnqM being an additive error
vector. If rank (φn(e)) ≤ dR−1

2 , the decoder for an MRD
code can recover the source [13]. MRD codes reflect a rank
analogue of the error correcting capability of MDS codes. It
can easily be shown that the column sum rank can ensure x0

is recoverable by time j in the channel y[0,j] = x[0,j] + e[0,j],
if the sum rank of e[0,j] ∈ Fn(j+1)

qM
is constrained to be at most

dR(j)−1
2 . The proof follows similarly to that for Theorem 2.

We next propose an analogue to Property 2 from Section
III-B. First, we bound the column sum rank by dR(j) ≤
(n− k)(j + 1) + 1. The sum rank of a channel packet cannot
exceed its Hamming weight, meaning that the upper bound
on column Hamming distance is inherited by the rank metric
analogue. Furthermore, we show that if the j-th column sum
rank achieves its upper bound, all prior column sum ranks do
so as well for their respective bounds.

Lemma 1. If dR(j) = (n − k)(j + 1) + 1, then dR(i) =
(n− k)(i+ 1) + 1 for all i ≤ j.

Proof: It suffices to prove for i = j−1. Let C[n, k,m] be
a code for which dR(j − 1) does not attain the upper bound
i.e., dR(j − 1) ≤ (n− k)j, but dR(j) achieves the maximum
i.e., dR(j) = (n−k)(j+1)+1. We will argue by contradiction
that such a code cannot exist.

Consider a source packet sequence s[0,j−1] that gener-
ates x[0,j−1] whose sum rank equal to dR(j − 1) i.e.,

∑j−1
t=0 rank (φn(xt)) = dR(j − 1) holds. We argue that

this sequence can be augmented to include xj , such that∑j
t=0 rank (φn(xt)) ≤ (n − k)(j + 1) < dR(j) holds. This

will complete the contradiction.
To exhibit such a choice of xj recall that xj =∑j−1
t=0 stGj−t + sjG0. The summation up to j − 1 produces

a vector whose Hamming weight is at most n. Because
rank (G0) = k, the source packet sj can be selected specif-
ically in order to negate up to k non-zero entries of the
first summation. This implies that wtH (xj) ≤ n − k and
consequently, rank (φn(xj)) ≤ n − k. Therefore, we bound
the sum rank of x[0,j]

j∑
t=0

rank (φn(xt)) = dR(j − 1) + rank (φn(xj))

≤ dR(j − 1) + n− k
≤ (n− k)(j + 1),

as required.
Codes achieving the Singleton bound for dR(m) are referred

to as MSR codes. They directly parallel m-MDS codes, which
maximize the m-th column Hamming distance [7]. In fact,
since dR(j) ≤ dH(j), MSR codes automatically maximize
the column Hamming distance and can be seen as a special
case of m-MDS codes.

By Theorem 2, an MSR code with memory T = W − 1
recovers source packets with delay T , when the rank of the
channel matrix is at least k(T + 1) in each sliding window
of length W . We prove the existence of MSR codes in the
next section, but first discuss a matrix multiplication property
for the generator matrix. The following theorem serves as an
extension of Theorem 1 to convolutional codes transmitted
over independent network uses.

Theorem 3. For 0 ≤ t ≤ j, let 0 ≤ ρt ≤ n satisfy
t∑
i=0

ρi ≤ k(t+ 1) (3)

for all t ≤ j and with equality for t = j. The following are
equivalent for any convolutional code:

1) dR(j) = (n− k)(j + 1) + 1
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2) For all full-rank A∗[0,j] = diag (A∗0, . . . ,A
∗
j ) constructed

from full-rank blocks A∗t ∈ Fn×ρtq and ρt that satisfy (3),
the product GEX

j A∗[0,j] is non-singular.

Proof: We first prove 1 ⇒ 2. Suppose there exists
an A∗[0,j] whose blocks satisfy (3), for which GEX

j A∗[0,j]
is singular. Then there exists a channel packet sequence
x[0,j], where x[0,j]A

∗
[0,j] = 0. We show that this leads to a

contradiction of 1. The contradiction is immediate if x0 6= 0.
In this case the sum rank of x[0,j] is at least dR(j), i.e.,∑j
t=0 rank (φn(xt)) ≥ dR(j) must hold. Note however that:

j∑
t=0

rank (φn(xt)) ≤ n(j + 1)−
j∑
t=0

ρt

= (n− k)(j + 1)

contradicts dR(j) = (n− k)(j + 1) + 1. Note that we use (3)
with equality at t = j in the second step.

If x0 = 0, then the sum rank of x[0,j] is not constrained
by dR(j). Let l = arg mint xt 6= 0 be the smallest index for
which xl is non-zero and consider the channel packet sequence
x[l,j], whose sum rank is at least dR(j−l). Because xtA

∗
t = 0

for t = l, . . . , j, we bound rank (φn(xt)) ≤ n − ρt in this
window. The sum rank of x[l,j] is bounded:

j∑
t=l

rank (φn(xt)) ≤ n(j − l + 1)−
j∑
t=l

ρt

≤ (n− k)(j − l + 1).

The second line follows from
∑j
t=l ρt ≥ k(j − l + 1), which

can be derived when (3) is met with equality for t = j. Due
to Lemma 1, the column sum rank achieves dR(j− l) = (n−
k)(j− l+1)+1. The sum rank of x[l,j] is less than dR(j− l),
which is a contradiction.

We prove 2⇒ 1 by using a code with dR(j) ≤ (n−k)(j+
1) and constructing a full-rank A∗[0,j] for which GEX

j A∗[0,j] is
singular. Let m = arg mini dR(i) ≤ (n−k)(i+1) be the first
instance where the column sum rank fails to attain its upper
bound and consider the sequence x[0,m] with the minimum
column sum rank. We show that there exist full-rank matrices
A∗t ∈ Fn×ρtq satisfying both (3) and xtA

∗
t = 0 for 0 ≤ t ≤ m.

In addition, we aim to have equality in (3) at t = m and thus
A∗[0,m] will be of dimension (m + 1)n × (m + 1)k. This is
relevant later in the proof.

When m = 0, the column rank of x0 cannot exceed n− k.
For every ρ0 ≤ n − rank (φn(x0)), there exists an A∗0 for
which x0A

∗
0 = 0. Clearly we can always choose an A∗0 with

rank ρ0 = k.
When m > 0, the sum rank of x[0,t] satisfies

t∑
i=0

rank(φn(xi)) ≥ (n− k)(t+ 1) + 1 (4)

for 0 ≤ t ≤ m− 1, and
m∑
i=0

rank(φn(xi)) ≤ (n− k)(m+ 1). (5)

Let ρt = n−rank (φn(xt)) for 0 ≤ t ≤ m−1 and choose the

appropriate A∗t for which xtA
∗
t = 0. For all 0 ≤ t ≤ m− 1,

we have that:
t∑
i=0

ρi = n(t+ 1)−
t∑
i=0

rank (φn(xi)) (6)

≤ k(t+ 1)− 1, (7)

confirming that (3) is satisfied for t ≤ m− 1. Note that in (7)
we apply the inequality in (4). We next specify an appropriate
choice for ρm. We will select:

ρm = (m+ 1)k −
m−1∑
t=0

ρt, (8)

and show that there exists an associated A∗m ∈ Fn×ρmq that
will satisfy xmA∗m = 0. It thus suffices to show that ρm also
satisfies ρm ≤ n− rank(φn(xm)). Note that

n− ρm = n− (m+ 1)k +

m−1∑
i=0

ρi (9)

= (n− k)(m+ 1)−
m−1∑
i=0

rank (φn(xi)) (10)

= (n− k)(m+ 1)−
m∑
i=0

rank (φn(xi))

+ rank (φn(xm)) (11)
≥ rank (φn(xm)), (12)

where (10) follows by using (6) with t = m− 1 and (12)
follows via the inequality in (5). Finally, our choice (8) also
guarantees that A∗[0,m] has dimension (m + 1)n × (m + 1)k
as claimed.

The remaining A∗m+1, . . . ,A
∗
j can be any full-rank n × k

matrices, thus satisfying (3) for all t ≤ j. The product
GEX
j A∗[0,j] can be written as

GEX
j A∗[0,j] =

(
GEX
m X

Y

)(
A∗[0,m]

A∗[m+1,j]

)

=

(
GEX
m A∗[0,m] XA∗[m+1,j]

YA∗[m+1,j]

)
where X and Y denote the remaining blocks that comprise
GEX
j . The block GEX

m A∗[0,m] is a square matrix with a zero
determinant. Therefore, detGEX

j A∗[0,j] is also zero.

Although in this work, we do not propose a general de-
coding algorithm for MSR codes, we remark that decoding
in the network streaming problem can be reduced to matrix
inversion. Consider a scenario where an MSR code with
memory T = W −1 is used and that all source packets before
time t have been recovered. To ensure that st is recoverable
within its deadline of time t + T , we consider increasingly
larger windows [t, t + j] for 0 ≤ j ≤ T . Theorem 2 states
that if

∑t+j
i=t ρi < k(t + j + 1), then the decoder cannot

guarantee recovery by time t + j. The window length j
is incremented at each time instance up to the first point
where

∑t+j
i=t ρi ≥ k(t + j + 1) is achieved. By Theorem

3, the rank conditions in (3) are satisfied and GEX
j A∗[t,t+j]
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is non-singular. We therefore invert this matrix and solve for
s[t,t+j], recovering all packets in the window simultaneously.
Consequently, packets encoded by an MSR code can be
recovered for the network streaming problem with complexity
O((jk)3).

In the next section, we construct an extended generator
matrix. Theorem 3 is then useful afterwards to verify that the
generator matrix does in fact define an MSR code.

V. PRESERVATION OF SUPER-REGULARITY

In [7], the authors provided a construction for a Toeplitz
super-regular matrix that exists in Fq for a prime q. From
(2), the generator matrix of a convolutional code is block
Toeplitz and we focus on super-regular matrices with similar
structure. For simplicity, we consider block Hankel matrices
and later convert the structure to block Toeplitz before code
construction.

A. Block Hankel Super-regular Matrices

A block Hankel super-regular matrix construction, which
we outline below, was proposed in [9] for FqM where q is a
prime power and M is sufficiently large.

Theorem 4 (Almeida et al., [9]). For n,m ∈ N, let M =
qn(m+2)−1. Let α ∈ FqM be a primitive element and a root
of the minimal polynomial pα(X). For 0 ≤ j ≤ m, let the
blocks Tj ∈ Fn×n

qM
be defined by

Tj =


α[nj] α[nj+1] . . . α[n(j+1)−1]

α[nj+1] α[nj+2] . . . α[n(j+1)]

...
...

. . .
...

α[n(j+1)−1] α[n(j+1)] . . . α[n(j+2)−2]

 . (13)

Then the following block Hankel matrix

T =


T0

T0 T1

. .
. ...

...
T0 . . . Tm−1 Tm

 (14)

is super-regular.

We refer the reader to [9] for the full proof. In this
subsection however, several properties of T that lead to its
super-regularity are highlighted. They will be useful in the
subsequent section.

Let Tj(r, s) be the element in the r-th row and s-th column
of Tj , where 0 ≤ r, s ≤ n − 1 and 0 ≤ j ≤ m. Each entry
of the matrix is a linearized monomial evaluated at X = α,
in particular 3,

Tj(r, s) = α[nj+r+s]. (15)

The q-degrees of these monomials increase as one moves
further down and to the right inside any Tj . This can be

3We use the variable X when discussing properties of linearized polyno-
mials and evaluate the polynomials at X = α specifically when calculating
the determinant of a matrix. However, we suppress the dependence on X
whenever it can be determined from the context.

described with the following inequalities:

degq Tj(r
′, s) > degq Tj(r, s), 0 ≤ r < r′ ≤ n− 1, (16a)

degq Tj(r, s
′) > degq Tj(r, s), 0 ≤ s < s′ ≤ n− 1, (16b)

for all 0 ≤ j ≤ m.
Combining all of the Tj to construct T in (14) preserves

the property of q-degrees strictly increasing downwards (along
a single column) or rightwards (along a single row) now for
the block Hankel matrix, i.e.,

degq Tj′(r
′, s) > degq Tj(r, s), 0 ≤ j < j′ ≤ m, (17a)

degq Tj′(r, s
′) > degq Tj(r, s), 0 ≤ j < j′ ≤ m, (17b)

for all 0 ≤ r, r′ ≤ n− 1 and 0 ≤ s, s′ ≤ n− 1.
To show that T is super-regular, let D be any l×l sub-matrix

of T. All sub-matrices of T preserve the degree inequalities
in (16) and (17). T being super-regular is equivalent to
detD 6= 0 for every D with a non-trivial determinant.

The determinant is evaluated using the Leibniz formula as a
polynomial D(α) =

∑
σ∈Sr

sgn (σ)Dσ . Each non-zero term
in the formula, Dσ , is a product of linearized monomials

Dσ =

l−1∏
i=0

D(i, σ(i)).

Note that the determinant polynomial itself is not linearized.
Using (16) and (17), the degree of this polynomial can be
bounded.

Lemma 2 (Almeida et al., [9]). For T defined in (14), let
D be any square sub-matrix with a non-trivial determinant
(see Appendix A-B). Let D(X) be the polynomial, such that
D(α) = detD. The degree of D(X) is bounded by

1 ≤ degD(X) < qn(m+2)−1.

In [9], the matrices defined by (13) contained entries with
Frobenius powers with fixed q = 2, rather than for a general
q. A direct extension reveals that the bounds in Lemma 2 still
holds when using Frobenius powers with arbitrary q in (13)
provided that M ≥ qn(m+2)−1. We refer the reader to [9],
[25] for the full proof.

An arbitrary q and appropriate choice of α permits the
super-regular blocks Tj to resemble Gabidulin code gener-
ator matrices. We require this slight generalization since our
channel in Section II can operate over any field Fq .

The upper bound gives degD(X) < deg pα(X), which
implies that, pα(X) - D(X). Consequently, α cannot be a
root of D(X) (see Lemma 4 of Appendix A).

The lower bound in our extension does not change from the
original. It implies that D(X) is not the zero polynomial and
can be derived by algorithmically finding a unique permutation
σ̄ = arg maxσ degDσ(X), which generates the highest degree
monomial term in the Leibniz formula. Because σ̄ is unique,
there is no other term which can negate this monomial. Then,
degD(X) = degDσ̄(X), meaning D(X) is not the zero
polynomial.

The upper and lower bounds cover both potential cases
to ensure D(α) 6= 0. Therefore, any D with a non-trivial
determinant is also non-singular and consequently, T is a
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super-regular matrix.
A block Toeplitz or Hankel super-regular matrix can be

used to construct the extended generator matrix of an m-
MDS code [8]. We will use a similar technique to construct
MSR codes. Super-regularity alone however, is insufficient
for the network streaming problem. We show that the super-
regular matrix construction technique above can be modified
to produce the desired property for the network streaming
problem.

B. Preservation of Super-regularity after Multiplication

In this section, we connect the matrix multiplication prop-
erty in Theorem 3 to super-regularity. The block Hankel matrix
T from (14) is constructed using an α that is both a primitive
and a normal element of the field FqM . We show in this case
that the super-regularity of T is preserved after multiplication
with any block diagonal matrix in the ground field.

Theorem 5. For 0 ≤ t ≤ m, let At ∈ Fn×nq be
any non-singular matrices. We then construct A[0,m] =

diag (A0, . . . ,Am). Let T ∈ Fn(m+1)×n(m+1)

qM
be the super-

regular matrix in (14). If M ≥ qn(m+2)−1 and α is a primitive
normal element of FqM , then F = TA[0,m] is super-regular.

Several properties of F are introduced before proving The-
orem 5. To simplify the notation, we assume that A0 = A1 =
· · · = Am = A. This allows free use of the polynomial
structures and bounds from the previous subsection. We will
then explain why the proof extends immediately to the general
case. Hence, A[0,m] = diag (A, . . . ,A), where A ∈ Fn×nq is
a non-singular matrix in the ground field and we consider
properties of the product

F = TA[0,m].

Property 3. The product F = TA[0,m] is a block Hankel
matrix, whose blocks each possess a Moore structure.

The product can be written as

F = TA[0,m] =


T0A

T0A T1A

. .
. ...

...
T0A . . . Tm−1A TmA

 .

Let Fj = TjA for j = 0, . . . ,m. To show that Fj has a
Moore structure, let (f0, . . . , fn−1) be the first row of F0,
i.e.,

(f0, . . . , fn−1) = (α[0], . . . , α[n−1])A.

Each element fi is a linearized polynomial fi(X) evaluated
at X = α, with coefficients from A = [Al,i], i.e.,

fi =

n−1∑
l=0

Al,iα
[l]. (18)

Since α ∈ FqM and Al,i ∈ Fq , invoking Freshman’s rule

fi(X
[s]) = f

[s]
i (X), s ≥ 0, (19)

results in the following Moore structure,

Fj =


f

[nj]
0 f

[nj]
1 . . . f

[nj]
n−1

f
[nj+1]
0 f

[nj+1]
1 . . . f

[nj+1]
n−1

...
...

. . .
...

f
[n(j+1)−1]
0 f

[n(j+1)−1]
1 . . . f

[n(j+1)−1]
n−1

 (20)

for 0 ≤ j ≤ m.

Remark 4. Since α is normal over FqM and A is full rank,
(f0, . . . , fn−1) are linearly independent over Fq (see [13]).

Property 4. The q-degrees of the polynomial elements of Fj
strictly increase downwards on any fixed column. They are
not necessarily monotonic across a fixed row.

From (18) and (19), the q-degree of each linearized poly-
nomial is bounded by

s ≤ degq f
[s]
i (X) ≤ n− 1 + s (21)

for 0 ≤ s ≤ n(m + 1) − 1. Note that both the upper and
lower bounds in (21) do not depend on the column index i.
Furthermore all elements on any fixed row in Fj share the
same degree (c.f. (20)). Consequently, the polynomial entries
on any fixed row of the block Fj share the same bound and
are not necessarily in an increasing order. Thus we do not
have a counterpart of (16b) that guarantees that the q-degrees
of elements are monotonically increasing across each row in
Tj .

The counterpart of (16a) is satisfied however. Let Fj(r, s)
be the element in r-th row and s-th column of Fj , i.e.,

Fj(r, s) = f [nj+r]
s , (22)

where 0 ≤ r, s ≤ n− 1 and 0 ≤ j ≤ m. The Moore structure
of Fj implies that the q-degrees of the polynomial entries
strictly increase from top to bottom along any fixed column
of Fj , i.e.,

degq Fj(r
′, s) > degq Fj(r, s), 0 ≤ r < r′ ≤ n− 1, (23)

for all 0 ≤ j ≤ m.
The following lemma establishes the relations between q-

degrees of the polynomial entries inside F.

Property 5. The following inequalities

degq Fj′(r
′, s) > degq Fj(r, s), 0 ≤ j < j′ ≤ m, (24a)

degq Fj′(r, s
′) > degq Fj(r, s), 0 ≤ j < j′ ≤ m, (24b)

hold for all 0 ≤ r, r′ ≤ n− 1 and 0 ≤ s, s′ ≤ n− 1.

Proof: The inequality in (24a) is established by

degq Fj′(r
′, s)− degq Fj(r, s)

= degq f
[nj′+r′]
s − degq f

[nj+r]
s

= (nj′ + r′) + degq fs − (nj + r)− degq fs

≥ n+ r′ − r
> 0, (25)

where the first inequality follows from j′ ≥ j + 1, and the
second due to r′ − r > −n.
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Using (21), we prove (24b),

degq Fj′(r, s
′)− degq Fj(r, s)

= degq f
[nj′+r]
s − degq f

[nj+r]
s

≥ nj′ + r − (n− 1 + nj + r)

> 0. (26)

Here, the first inequality follows from (21), and the second
due to j′ ≥ j + 1.

We note that (23), (24a) and (24b) parallel the inequali-
ties (16a), (17a) and (17b) for entries of T. It remains to find
an equivalent relationship of (16b) for the entries of F.

To state the next property we let Ci ∈ Fn(m+1)×n
qM

and

Ri ∈ Fn×n(m+1)

qM
be the i-th column and row blocks of F,

i.e.,

F =
(
C0,C1, · · · ,Cm

)
=


R0

R1

...
Rm

 , (27)

where

Ci ,



0
...
0
F0

F1

...
Fi


Ri ,

(
0, · · · ,0,F0,F1, · · · ,Fi

)
. (28)

The authors in [9] showed the following property.

Property 6. Let D be an l × l sub-matrix of F possessing a
non-trivial determinant. The matrix D can be written as

D =


Oh

Dh

Oh−1

Dh−1

...
O0 . . .
D0

 , (29)

where 0 ≤ h ≤ m. Each Oi is a zero matrix drawn from a
single row block of F, whereas each Di is a matrix containing
non-zero polynomials drawn from a single column block of
F. Let li ∈ {1, . . . , n} be the number of columns in each Di

for i ∈ {0, . . . , h}. Then,
∑h
i=0 li = l.

Remark 5. In the special case of h = m, Di consists of
columns drawn from the non-zero elements of Ci, whereas
Oi consists of rows drawn from the zero elements of Rm−i.
When h < m, it can be shown that D preserves the structure
in (29). If the j-th column block Cj of F was skipped when
generating the submatrix D, one has to skip the (m − j)-th
row block Rm−j to avoid generating a trivial sub-matrix D.
We refer the reader to [9] for the complete proof.

Remark 6. The degrees of the polynomials entries of D
satisfy (23), (24a) and (24b).

Lemma 3. For 1 ≤ l ≤ n, let i1, i2, . . . , il be l distinct

elements of the set {0, . . . , n − 1}. There exists a full-rank
matrix M ∈ Fl×lq , such that the q-degrees of

(f̂i1 , f̂i2 , . . . , f̂il) = (fi1 , fi2 , . . . , fil)M

are monotonically increasing. Moreover, the q-degrees of the
polynomial entries of the product (f

[s]
i1
, f

[s]
i2
, . . . , f

[s]
il

)M are
also sorted in the same order, for all 0 ≤ s ≤ n(m+ 1)− 1.

Proof: As discussed in Remark 4, because α is a nor-
mal element of FqM and A is full rank, the polynomials
(fi1 , fi2 , . . . , fil) are linearly independent over Fq . As a result,
the isomorphic matrix(

φn(fi1), φn(fi2), . . . , φn(fil)
)

is full column rank and can be transformed to reduced column
echelon form

(
φ(f̂i1), φ(f̂i2), . . . , φ(f̂il)

)
through elementary

column operations, i.e.,(
φn(f̂i1), φn(f̂i2), . . . , φn(f̂il)

)
=
(
φn(fi1), φn(fi2), . . . , φn(fil)

)
M,

where M ∈ Fl×lq is full rank matrix in the ground field. This
is equivalent to saying that the degrees of the polynomials
(f̂i1 , . . . , f̂il) are strictly increasing.

The second part immediately follows, as
(f

[s]
i1
, f

[s]
i2
, . . . , f

[s]
il

)M = (f̂
[s]
i1
, f̂

[s]
i2
, . . . , f̂

[s]
il

) by using
Freshman’s rule.

C. Proof of Theorem 5
Having established the various properties in the previous

section we are now in a position to complete the proof of
Theorem 5.

Proof of Theorem 5: Consider any nontrivial minor D of
F. We will show that det(D) 6= 0. First note from Property 4
and 5 the elements of D satisfy (23), (24a) and (24b), which
are the counterparts of (16a), (17a) and (17b) respectively. We
will show that D can be transformed into a matrix D̂ that
satisfies the counterpart of (16b).

Using Property 6 we have that the structure of D should
satisfy (29). Consider the sub-matrices D0, . . . ,Dh associated
with D. Each Dj is contained entirely within a column
block of F. Thus it follows from (20) that any row of Dj

can be expressed in the form (f
[s]
i1
, f

[s]
i2
, . . . , f

[s]
ilj

) for some
0 ≤ s ≤ n(m+1)−1 and 0 ≤ i1 < i2 < · · · < ilj ≤ n−1.
In particular the indices i1, . . . , ilj are common across all
rows in Dj and only the q-degree, denoted by s, varies
across the rows. Using Lemma 3, we construct a full-rank
matrix Mj ∈ Flj×ljq , such that the degrees of the polynomials
of D̂j = Dj · Mj will increase monotonically across the
columns within each fixed row. Performing this for each Dj ,
we construct

D̂ = D ·M, (30)

where M = diag (Mh, . . . ,M0) is full-rank with elements
in Fq . It follows that the transformed matrix D̂ satisfies the
counterpart of (16b).

We argue that the remaining conditions are also preserved
under the transformation of M. Note that the elements on any
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given row of D̂j are obtained through linear combinations
(over Fq) of the elements in the corresponding row of Dj .
Since both (21) and (22) are satisfied by all elements belonging
to a fixed row of Dj , they must also be satisfied by D̂j .
Then the proof of (24b), (23) and (24a) can be carried out
for elements in D̂j .

Consequently, D̂ completely satisfies (16) and (17), in
contrast to D which only satisfies (23) and (24). The proof
showing that D̂ is non-singular then follows verbatim to the
proof showing all sub-matrices of T are non-singular. Then,
det D̂ = detD detM implies that D is also non-singular and
therefore, F is super-regular.

Recall for this proof, we fixed A0 = A1 = · · · = Am.
Without the assumption, the product F would be comprised
of a different set of fi(α) for each column block. Because
each Di is a sub-matrix from a single column block and
column operations are performed for each Di independently,
the polynomial degrees can always be transformed in order
to satisfy (16) and (17). Consequently, the proof is identical
when considering a A[0,m] constructed from different blocks.

We summarize the main steps in the proof of Theorem 5
as follows. A comparison of our proof and the original proof
from [9] is provided in Fig. 2.

1) We start by constructing the matrices Tj in (13) for 0 ≤
j ≤ m with α being a primitive normal over FqM .

2) We consider the product F = TA[0,m], where T is
the block Hankel matrix in (14) and A[0,m] is a block
diagonal matrix in the ground field.

3) We next consider non-trivial sub-matrices D of F and
study their structure and ordering of the q-degrees (Prop-
erties 4, 5, 6).

4) In Lemma 3 we show that the matrix D can be trans-
formed into the matrix D̂, where the q-degrees are sorted
as required by Lemma 2.

5) Applying Lemma 2 it follows that D̂ is non-singular. In
turn this also implies that D is non-singular.

6) This is equivalent to showing that F is super-regular and
the Theorem follows.

D. Example Illustrating the Proof of Theorem 5

In this subsection, we provide an example of the preserva-
tion of super-regularity, detailing the properties of F and the
key concepts in the proof of Theorem 5.

Example 1. Let q = 2, n = 4,m = 1 and α be a primitive
normal element of F2M , where M = qn(m+2)−1 = 2048

satisfies Theorem 5. Then,

T =

(
0 T0

T0 T1

)

=



α[0] α[1] α[2] α[3]

α[1] α[2] α[3] α[4]

α[2] α[3] α[4] α[5]

α[3] α[4] α[5] α[6]

α[0] α[1] α[2] α[3] α[4] α[5] α[6] α[7]

α[1] α[2] α[3] α[4] α[5] α[6] α[7] α[8]

α[2] α[3] α[4] α[5] α[6] α[7] α[8] α[9]

α[3] α[4] α[5] α[6] α[7] α[8] α[9] α[10]


is a super-regular matrix.

Let A0 and A1 be the following two non-singular square
matrices:

A0 =


0 1 1 0
1 0 0 0
1 0 1 0
0 0 0 1

 , A1 =


1 0 0 1
1 1 1 0
0 1 0 1
0 1 0 0

 .

We use A[0,1] = diag (A0,A1) as the block-diagonal
matrix and generate the product F given in (31).

Because A0 6= A1, the matrix F is not a Hankel ma-
trix. However, note that every block matrix posses a Moore
structure. The elements in every row of a given block are
Frobenius powers of the corresponding elements in the first
row. Since α is a normal element in F22048 and A0 and
A1 are full rank, the isomorphism φn(·) in Appendix A-A
implies that the entries generating the left column block
α[1] +α[2], α[0], α[0] +α[2], α[3] are linearly independent poly-
nomials. Similarly, the entries generating the right column
block α[0] + α[1], α[1] + α[2] + α[3], α[1], α[0] + α[2] are also
respectively linearly independent amongst each other as stated
in Remark 4. Note that the q-degree of these polynomials are
upper and lower bounded between 3 and 0 which satisfies (21).

Furthermore, the q-degrees are sorted according to Prop-
erty 5. On a given column of F, the q-degrees are increasing
by 1 from top to bottom. Moreover, for any fixed row, any
polynomial in the left block has a lower degree than any
polynomial in the right block.

Now consider the sub-matrix formed from rows ri, i ∈

F = TA[0,1] =



α[0] + α[1] α[1] + α[2] + α[3] α[1] α[0] + α[2]

α[1] + α[2] α[2] + α[3] + α[4] α[2] α[1] + α[3]

α[2] + α[3] α[3] + α[4] + α[5] α[3] α[2] + α[4]

α[3] + α[4] α[4] + α[5] + α[6] α[4] α[3] + α[5]

α[1] + α[2] α[0] α[0] + α[2] α[3] α[4] + α[5] α[5] + α[6] + α[7] α[5] α[4] + α[6]

α[2] + α[3] α[1] α[1] + α[3] α[4] α[5] + α[6] α[6] + α[7] + α[8] α[6] α[5] + α[7]

α[3] + α[4] α[2] α[2] + α[4] α[5] α[6] + α[7] α[7] + α[8] + α[9] α[7] α[6] + α[8]

α[4] + α[5] α[3] α[3] + α[5] α[6] α[7] + α[8] α[8] + α[9] + α[10] α[8] α[7] + α[9]


(31)
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Construct Tj where α is only primitive

Consider the Hankel Matrix T

Structure and Properties of a
non-trivial sub-matrix D of T

Apply Lemma 2 to
show D is non-singular

Since D is non-singular,
so T is super-regular

(a) Almeida et. al. [9] Proof Summary

Construct Tj where α is
both primitive and normal

F = TA is a Hankel Matrix

Structure and Properties of a
non-trivial sub-matrix D of F

Construct D̂ from D such
that q-degrees are sorted

Apply Lemma 2 to
show D̂ is non-singular

Since D̂ is non-singular, so
is D and F is super-regular

(b) MSR Proof Summary

Fig. 2: A summary of the proof of Theorem 5, compared with the original proof given in [9]. The highlighted sections denote
the key differences.

{1, 2, 4, 5} and columns cj , j ∈ {3, 4, 5, 6}. This matrix

D =


α[1] + α[2] α[2] + α[3] + α[4] α[2]

α[2] + α[3] α[3] + α[4] + α[5] α[3]

α[3] α[4] + α[5] α[5] + α[6] + α[7] α[5]

α[4] α[5] + α[6] α[6] + α[7] + α[8] α[6]


does not have increasing q-degrees along rows, i.e., (16b) is
not satisfied. The degree of the polynomials in the second and
fourth columns are equal and lower than the degree of the
polynomials in the third column. The degrees can be sorted
by subtracting the fourth column from the second and then
swapping the third and the fourth columns. The transformed
matrix

D̂ =


α[1] α[2] α[2] + α[3] + α[4]

α[2] α[3] α[3] + α[4] + α[5]

α[0] α[4] α[5] α[5] + α[6] + α[7]

α[1] α[5] α[6] α[6] + α[7] + α[8]


completely satisfies (16) and (17). The above column opera-
tions are equivalent to right multiplication with the matrix,

M =


1 0 0 0
0 1 0 0
0 0 0 1
0 1 1 0

 ,

which is full-rank. It follows that D̂ is non-singular and
therefore, D as well.

VI. CODE CONSTRUCTION

The rows of T are permuted to form the block Toeplitz
structure of an extended generator matrix

T̄ =


T0 T1 . . . Tm

T0 . . . Tm−1

. . .
...
T0

 . (32)

Since every sub-matrix of T has a counterpart in T̄ identical
up to row permutations, this block Toeplitz matrix is also
super-regular. GEX

m is then constructed as a sub-matrix of
k(m+1) rows from T. This process parallels the construction
of m-MDS generator matrices [7].

Theorem 6. Let T̄ be the super-regular matrix in (32)
generated using a primitive normal α ∈ FqM , where M =
qn(m+2)−1. Let 0 ≤ i1 < · · · < ik < n and construct a
k(m+1)×n(m+1) sub-matrix GEX

m of T̄ from rows indexed
jn+i1, . . . , jn+ik for 0 ≤ j ≤ m. This matrix is the extended
generator of an MSR convolutional code C[n, k,m].

Proof: We show that GEX
m satisfies Theorem 3. Assume

without loss of generality that i1 = 0, . . . , ik = k−1. Each Ti

is divided into
(
Gi

T′i

)
, where Gi ∈ Fk×n

qM
are the blocks of the

extended generator matrix. For 0 ≤ t ≤ m, let At ∈ Fn×nq be
non-singular matrices. We similarly divide At =

(
A∗t A′t

)
,

where the two blocks A∗t ∈ Fn×ρtq and A′t ∈ Fn×(n−ρt)
q

represent the reduced channel matrix and some remaining
matrix respectively. Let A[0,m] = diag (A0, . . . ,Am). The
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product can be written as

T̄A[0,m] =


T0A0 T1A1 . . . TmAm

T0A1 . . . Tm−1Am

. . .
...

T0Am

 ,

where

TiAt =

(
GiA

∗
t GiA

′
t

T′iA
∗
t T′iA

′
t

)
.

The sub-matrix of T̄A[0,m] containing only the rows
and columns involving GiA

∗
t is equal to the product

GEX
m A∗[0,m]. Because T̄A[0,m] is super-regular, the determi-

nant of GEX
m A∗[0,m] is either trivially zero or non-trivial and

therefore non-zero.

It can be shown that for all A∗[0,m] whose blocks satisfy (3),
the product

GEX
m A∗[0,m] =


G0A

∗
0 G1A

∗
1 . . . GmA∗m

G0A
∗
1 . . . Gm−1A

∗
m

. . .
...

G0A
∗
m


has a non-trivial determinant. Note that the structure is re-
versed from that of D in (29). In [9], the authors showed
that for D to have a non-trivial determinant, the number of
rows of each Dj block cannot be less than the number of
columns of each Oj block. In this case each Dj block of
GEX
m A∗[0,m] contains k(j+1) rows and each Oj block contains∑j
t=0 ρt columns. Consequently if the condition in (3) is

satisfied, then k(j + 1) ≥
∑j
t=0 ρt for j ≤ m implies that

GEX
m A∗[0,m] has a non-trivial determinant and is therefore

non-singular. Thus, GEX
m satisfies Theorem 3 and C[n, k,m]

achieves dR(m) = (n− k)(m+ 1) + 1.

Remark 7. Our construction thus far is feasible over any
sliding window channel CH(S,W ) with delay T = W − 1
and S < dR(W − 1). If instead T ≥W holds, the same code
C[n, k, T ] is still feasible with the same threshold on S i.e.,
S < dR(W − 1). However if T < W − 1, then the code is
feasible provided that S < dR(T ).

A. Numerical Results

The bound on the field size given in Theorem 5 is only
a sufficiency constraint required for the proof. For small
code parameters, it is possible to numerically verify whether
Theorem 3 holds for a given extended generator matrix. An
example is provided below of an MSR code over a small
field. For the results in this section, we represent the primitive
normal elements in the field as elements within the polynomial
ring.

Example 2. Let α = X + 1 be a primitive normal element
in F211 = F2/〈X11 + X2 + 1〉. We construct the following

extended generator matrix

GEX
1 =


α[0] α[1] α[2] α[3] α[4] α[5] α[6] α[7]

α[1] α[2] α[3] α[4] α[5] α[6] α[7] α[8]

α[0] α[1] α[2] α[3]

α[1] α[2] α[3] α[4]

 .

This matrix satisfies Theorem 3, making it the generator for an
MSR code C[4, 2, 1]. Theorem 6 guarantees the construction if
M = 211, i.e., α is a primitive normal element of F22048 .

Example 3. Let α = X + 1 be a primitive normal element in
F211 = F2/〈X11 +X2 + 1〉. The extended generator GEX

2 is
given by

α α[1] α[2] α[3] α[4] α[5] α[6] α[7] α[8]

α[2] α[3] α[4] α[5] α[6] α[7] α[8] α[9] α[10]

α α[1] α[2] α[3] α[4] α[5]

α[2] α[3] α[4] α[5] α[6] α[7]

α α[1] α[2]

α[2] α[3] α[4]

 .

This matrix satisfies Theorem 3, making it the generator for an
MSR code C[3, 2, 2]. Theorem 6 guarantees the construction if
M = 211, i.e., α is a primitive normal element of F22048 .

The construction in Theorem 6 can generate MSR codes
over much smaller field sizes than than those given by the
bound of M ≥ qn(m+2)−1. Table I provides a list of code
parameters and the field sizes on which they satisfy the matrix
multiplication property of Theorem 3.

VII. CONCLUSION

We introduce a new distance metric for convolutional codes
called the column sum rank distance. We prove several prop-
erties analogous to the column Hamming distance. A new
family of codes — MSR Codes — that achieve the maximum
distance up to the code memory is proposed. This is the
rank metric counterpart to the m-MDS convolutional code.
Our construction is based on matrices over extension fields
that preserve super-regularity after multiplication with block
diagonal matrices in the ground field.

The proof requires large field sizes but we numerically
show that MSR codes do exist over smaller fields. Future
work involves pursuing a more detailed study on field size
requirements. Moreover, we have only considered a specific
class of rank-deficient sliding window channels. In single-
link streaming over burst erasure or mixed erasure channels,
structured constructions using m-MDS codes as constituents
have been revealed as more powerful alternatives [4]. A similar
study pertaining MSR codes remains an interesting direction
of further study.

APPENDIX A
MATHEMATICAL PRELIMINARIES

A. Finite Fields

For M ≥ 0 and a prime power q, let Fq be the finite
field with q elements and FqM be an extension field of Fq . A
primitive element α ∈ FqM is one whose consecutive powers
can generate all non-zero elements of that field, i.e., FqM =
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Parameters [n, k,m] Field Bound Achievable Field α

[4, 2, 1] F22048 F211 = F2/〈X11 +X2 + 1〉 X + 1
[3, 2, 2] F22048 F211 = F2/〈X11 +X2 + 1〉 X + 1
[3, 1, 2] F22048 F211 = F2/〈X11 +X2 + 1〉 X + 1
[2, 1, 2] F2128 F27 = F2/〈X7 +X3 + 1〉 X3 + 1
[2, 1, 1] F264 F25 = F2/〈X5 +X2 + 1〉 X + 1

TABLE I: Achievable field sizes under which codes constructed using Theorem 6. The bound required by the theorem for
each set of code parameters is provided in the middle column.

{0, α, α2, . . . , αq
M−1}. Let Fq[X] be a polynomial ring of the

ground field. The minimal polynomial of a primitive element
α is the lowest degree monic polynomial pα(X) ∈ Fq[X] for
which α is a root. The minimal polynomial is irreducible and
the degree of pα(X) is equal to M .

Lemma 4. If f(α) = 0 for any f(X) ∈ Fq[X], then pα(X) |
f(X).

Proof: The proof can be found in [26, Chapter 4].
The extension field FqM is isomorphic to the M -

dimensional vector space FMq over the ground field. Let
α0, . . . , αM−1 ∈ FqM map to a basis for the vector space.
A basis is defined as being normal when for 0 ≤ i ≤ m− 1,
each αi = αq

i

for some α ∈ FqM . The generating element α
is referred to as a normal element. The notation α[i] = αq

i

is used to describe the i-th Frobenius power of α. Every
element f ∈ FqM can be written as a linear combination in
Fq of the basis elements. Using the normal basis, f resembles
a linearized polynomial f(X) =

∑M−1
i=0 fiX

[i] ∈ Fq[X]
evaluated at the normal element X = α. The coefficients of
this polynomial can be mapped

f(α) =

M−1∑
i=0

fiα
[i] 7→ f = (f0, . . . , fM−1)T (33)

to the entries of a unique vector f ∈ FM×1
q . This mapping

can be extended to vector spaces over the extension field and
matrix spaces over the ground field. Using (33), we define
φn : FnqM → FM×nq as a bijection transforming a vector of
linearized polynomial entries to a matrix whose columns are
the coefficients of the polynomials.

For every finite extension of a finite field, there exists at
least one element that is both a normal and a primitive element
[27]. Such an element is referred to as being primitive normal.
The properties of both normal and primitive elements are
inherited in a primitive normal and will be useful in our code
construction.

A linearized polynomial is defined by the property that every
monomial term must have a Frobenius power. A linearized
polynomial possesses a q-degree, denoted as degq f(X),
which gives the largest Frobenius power of the polynomial.

B. Super-regular Matrices

For b ∈ N, let σ be a permutation of the set {0, . . . , b− 1}.
A permutation is comprised of a series of transpositions, which
are defined as two entries of the set switching positions. The
sign function of a permutation measures its parity, i.e., sgn (σ)

is equal to 1 when σ is constructed from an even number of
transpositions, and equal to −1 otherwise. Let Sb denote the
set of all possible permutations. The determinant of a b × b
matrix D can be calculated by summing over all permutations
in Sb in the Leibniz formula

detD ,
∑
σ∈Sb

sgn (σ)

b−1∏
i=0

Di,σ(i). (34)

Each product
∏b−1
i=0 Di,σ(i) is referred to as a term in the

summation. When every term is equal to 0, the matrix is said
to have a trivial determinant. Using the Leibniz formula, a
super-regular matrix is a matrix for which every square sub-
matrix with a non-trivial determinant is non-singular.
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