Information Theoretic Security: Fundamentals and Applications

Ashish Khisti

University of Toronto

IPSI Seminar Nov 25th 2013

Layered Architectures

Layered architecture for communication systems.

Application Layer

(Semantics of Information)

Transport Layer

(End to End Connectivity)

Network Layer

(Routing and Path Discovery)

Data Link Layer

(Error Correction Codes)

Physical Layer

(Signals, RF hardware)

Where is Security?

Layered Architectures

Layered architecture for communication systems.

Traditional Approach

A typical graduate level course in computer security introduces Shannon's notion of security.

- Note that Key Size = Message length, hence impractical
- Focus: computational cryptography

Is this all about information theoretic security?

Outline

- Motivating Applications
 - Secure Biometrics
 - Smart-Meter Privacy
 - Wireless Systems
- Information Theoretic Models
 - Wiretap Channel Model
 - Secret-key agreement

Biometric Technologies

Laptop

V I IVI

Passport

Biometric Technologies

Biometric Technologies

Issue: Biometrics are stored in the clear

- **X**, **Y**: length seven binary sequence
- Channel Model: one bit flip (8 possibilities)
- 3 bits required.

- X, Y: length seven binary sequence
- Channel Model: one bit flip (8 possibilities)
- 3 bits required.

- X, Y: length seven binary sequence
- Channel Model: one bit flip (8 possibilities)
- 3 bits required.

- X, Y: length seven binary sequence
- Channel Model: one bit flip (8 possibilities)
- 3 bits required.

Syndrome Encoder Syndrome bits Syndrome bits

- X, Y: length seven binary sequence
- Channel Model: one bit flip (8 possibilities)
- 3 bits required.

Syndrome Encoder

Privacy Preserving Biometrics

S. Draper, A. Khisti, et. al "Using distributed source coding to secure fingerprint biometrics" ICASSP, 2007

Store syndromes

Privacy Preserving Biometrics

S. Draper, A. Khisti, et. al "Using distributed source coding to secure fingerprint biometrics" ICASSP, 2007

Authentication biometric

- Store syndromes
- Reproduce enrollment biometric

Privacy Preserving Biometrics

S. Draper, A. Khisti, et. al "Using distributed source coding to secure fingerprint biometrics" ICASSP, 2007

Authentication biometric

- Store syndromes
- Reproduce enrollment biometric
- Authenticate

Smart-Meter Privacy

D. Varodayan and A Khisti, ICASSP 2011

C. Efthymiou and G. Kalogridis, Smart grid privacy via anonymization of smart

Smart-Meter Privacy

D. Varodayan and A Khisti, ICASSP 2011

- Privacy Leakage: $I(X^N; Y^N)$
- Battery: Limited Storage
- Model Battery as a Finite State Communication Channel
- "Design the Channel"

Secret-Key Generation in Wireless Fading Channels

- Fading
- Reciprocity
- Spatial Decorrelation

Information Theoretic Security: Fundamentals and Applications : ... Ashish Khisti (University of Toronto)

Secret-Key Generation in Wireless Fading Channels

Secret-Key Generation in Wireless Fading Channels A. Khisti 2013

Secure MIMO Communication

- Signal of interest: direction of legitimate receiver.
- Synthetic noise: null-space of legitimate receiver.

Secure MIMO Multicast

A. Khisti, 2011

Artificial Noise Alignment

- Align Noise Symbols at Legitimate Receivers
- Mask Information Symbols at Eavesdroppers

Outline

- Motivating Applications
 - Secure Biometrics
 - Smart-Meter Privacy
 - Wireless Systems
- Information Theoretic Models
 - Wiretap Channel Model
 - Secret-key agreement

Wiretap Channel Wyner'75

- Reliability Constraint : $Pr(M \neq \hat{M}) \xrightarrow{n} 0$
- Secrecy Constraint : $\frac{1}{n}H(M|Y_e^n) = \frac{1}{n}H(M) o_n(1)$

Secrecy Capacity

Secrecy Criterion

$$\underbrace{\frac{1}{n}H(M|Y_e^n)}_{\text{Equivocation}} = \underbrace{\frac{1}{n}H(M)}_{\substack{\text{Information} \\ \text{rate}}} - o_n(1)$$

- Perfect Secrecy: $o_n(1) \equiv 0$, (Shannon '49)
- Weak Secrecy: $o_n(1) \xrightarrow{n} 0$, (Wyner '75)
- Strong Secrecy: $o_n(1) \in O\left(\frac{1}{n}\right)$, (Maurer and Wolf '00)
- Guessing approach : (Arikan & Merhav '02)

Focus: Wyner's notion

Joint Encryption and Encoding

Separation based approach vs. Wiretap codes

Traditional Approach

- Separation based
- Requires keys

Wiretap Codes

- Joint encryption/encoding
- Channel based secrecy

Joint Encryption and Encoding

Separation based approach vs. Wiretap codes

Traditional Approach

- Separation based
- Requires keys

Wiretap Codes

- Joint encryption/encoding
- Channel based secrecy

Joint Encryption and Encoding

Separation based approach vs. Wiretap codes

Traditional Approach

- Separation based
- Requires keys

Wiretap Codes

- Joint encryption/encoding
- Channel based secrecy

- QAM Modulation
- Uniform noise model
- $\sigma_e^2 = 4\sigma_r^2$

Recv. Noise

Eaves. Noise

 $\sigma_e^2 = 4\sigma_r^2$

- QAM Modulation
- Uniform noise model

Recv. Noise

- **QAM Modulation**
- Uniform noise model

Recv. Noise

Eaves. Noise $\sigma_{\rm p}^2 = 4\sigma_{\rm r}^2$

$$\sigma_{\rm e}^2 = 4\sigma_{\rm r}^2$$

Receiver's Constellation

$$C_r = \log_2 64 = 6 \text{ b/s}$$

Eavesdropper's Constellation

$$C_e = \log_2 16 = 4 \text{ b/s}$$

- **QAM Modulation**
- Uniform noise model

Recv. Noise

Eaves. Noise $\sigma_{\rm p}^2 = 4\sigma_{\rm r}^2$

$$\sigma_e^2 = 4\sigma_r^2$$

Receiver's Constellation

Eavesdropper's Constellation

$$C_r = \log_2 64 = 6 \text{ b/s}$$

$$C_e = \log_2 16 = 4 \text{ b/s}$$

$$\mathsf{C_s} = \mathsf{C_r} - \mathsf{C_e} = 2 \; \mathsf{b/s}$$
 and Applications :

Secure QAM Constellation

- Msg 1
- Msg 2Msg 3
- Msg 4

Encoding: Randomly select one candidate

Wiretap Codes

Decoding at legitimate receiver

Wiretap Codes

Confusion at the eavesdropper

Gaussian Wiretap Channel

Leung-Yan-Cheong and Hellman'78

Secrecy Capacity

$$C_s = \{\log(1 + SNR_r) - \log(1 + SNR_e)\}^+$$

= $\{C(SNR_r) - C(SNR_e)\}^+$

- SNR_r: Legitimate receiver's signal to noise ratio
- SNR_e: Eavesdropper's signal to noise ratio

Other Classical Results

The secrecy capacity was also characterized for:

■ Degraded Memoryless Wiretap Channel(Wyner'75) $X \rightarrow Y_r \rightarrow Y_s$

$$C = \max_{p_X} I(X; Y_r) - I(X; Y_e)$$

Discrete Memoryless Wiretap Channel (Csiszar-Korner '78)

$$C = \max_{p_{U,X}} I(U; Y_r) - I(U; Y_e),$$

$$U \rightarrow X \rightarrow (Y_r, Y_e)$$

Cardinality bounds on the alphabet of U

Gaussian Wiretap Channel

Strong Requirement: Eavesdropper must not be closer to the transmitter

Gaussian Wiretap Channel

Strong Requirement: Eavesdropper must not be closer to the transmitter

Solution ... Multiple Antennas

Khisti-Wornell 2010

Multi-antenna wiretap channel

- Spatial Diversity: Multiple Antennas
- Temporal Diversity: Fading Channels

Multi-antenna wiretap channel

Channel Model

$$Y_r = H_r X + Z_r$$
$$Y_e = H_e X + Z_e$$

- Channel matrices:
- $H_r \in \mathbb{C}^{N_r imes N_t}$, $H_e \in \mathbb{C}^{N_e imes N_t}$
- N_t : # Tx antennas
- \blacksquare AWGN noise: Z_r , Z_e

MIMOME: Secrecy Capacity

Khisti-Wornell 2010

Theorem

Secrecy capacity of the Multi-antenna wiretap channel is given by,

$$C_s = \max_{Q \succeq 0: Tr(Q) \le P} \log \det (I_r + H_r Q H_r^\dagger) - \log \det (I_e + H_e Q H_e^\dagger)$$

Khisti-Wornell 2010

Theorem

Secrecy capacity of the Multi-antenna wiretap channel is given by,

$$C_s = \max_{Q \succeq 0: Tr(Q) \le P} \log \det(I_r + H_r Q H_r^\dagger) - \log \det(I_e + H_e Q H_e^\dagger)$$

Scalar Gaussian Case (Leung-Yan-Cheong & Hellman '78),

$$C_s = \log(1 + SNR_r) - \log(1 + SNR_e)$$

- New information theoretic upper-bound
- Convex Optimization
- Matrix Analysis

$$C_s = \max_{Q \succeq 0: Tr(Q) \le P} \log \det(I_r + H_r Q H_r^\dagger) - \log \det(I_e + H_e Q H_e^\dagger)$$

$$C_s = \max_{Q \succeq 0: T_r(Q) \le P} \log \det(I_r + H_r Q H_r^\dagger) - \log \det(I_e + H_e Q H_e^\dagger)$$

Convex Reformulation

$$C_s = \min_{\Phi \in \mathcal{P}} \max_{Q \in \mathcal{Q}} R_+(\Phi, Q)$$

$$C_s = \max_{Q \succeq 0: Tr(Q) \le P} \log \det(I_r + H_r Q H_r^\dagger) - \log \det(I_e + H_e Q H_e^\dagger)$$

Convex Reformulation

$$C_s = \min_{\Phi \in \mathcal{P}} \max_{Q \in \mathcal{Q}} R_+(\Phi, Q)$$

MISOME Case: rank-one covariance is optimal

$$C_s = \log^+ \lambda_{\max} (I + Ph_r h_r^{\dagger}, I + PH_e^{\dagger} H_e)$$

$$C_s = \max_{Q \succeq 0: T_r(Q) \le P} \log \det(I_r + H_r Q H_r^\dagger) - \log \det(I_e + H_e Q H_e^\dagger)$$

Convex Reformulation

$$C_s = \min_{\Phi \in \mathcal{P}} \max_{Q \in \mathcal{Q}} R_+(\Phi, Q)$$

MISOME Case: rank-one covariance is optimal

$$C_s = \log^+ \lambda_{\max} (I + Ph_r h_r^{\dagger}, I + PH_e^{\dagger} H_e)$$

3 High SNR case: GSVD transform Simultaneous diagonalization: (H_r, H_e)

Masked Beamforming Scheme

Masked Beamforming Scheme

- Signal of interest: direction of legitimate receiver.
- Synthetic noise: null-space of legitimate receiver.

Masked Beamforming vs. Capacity Achieving Scheme

MISOME Case:
$$Y_r = h_r^{\dagger} X + Z_r$$
, $Y_e = H_e X + Z_e$

Masked Beamforming vs. Capacity Achieving Scheme

MISOME Case:
$$Y_r = h_r^{\dagger} X + Z_r$$
, $Y_e = H_e X + Z_e$

- Transmit Power: P
- Transmit antennas: N_t

Outline

- Motivating Applications
 - Secure Biometrics
 - Smart-Meter Privacy
 - Wireless Systems
- Information Theoretic Models
 - Wiretap Channel Model
 - Secret-key agreement

Secret Key Generation

Maurer '93, Ahlswede-Csiszar '93

- Error Probability: $Pr(k \neq \hat{k}) \leq \varepsilon_N$
- Equivocation: $\frac{1}{N}H(k|f) \ge \frac{1}{N}H(k) \varepsilon_n$
- Rate $R = \frac{1}{N}H(k)$

$$C_{\text{key}} = I(u; v)$$

Achievability

Random Binning Technique (Slepian-Wolf '73)

■ No. of Bins: $\approx 2^{nH(v|u)}$

No. of Sequences/Bin: $\approx 2^{nl(u;v)}$ Information Theoretic Security: Fundamentals and Applications:
Ashish Khisti (University of Toronto)

31 / 35

Joint Source and Channel Coding

Khisti-Diggavi-Wornell '08

Two types of uncertainty

- Sources
- Channel

How to combine both these equivocation for secret-key-distillation?

Achievability

$$R_{\text{key}} = \max_{t,x} \underbrace{\beta I(t; v)}_{\text{src. equiv.}} + \underbrace{I(x; y) - I(x; z)}_{\text{channel equiv.}}$$
$$t \to u \to v, \quad \beta \{I(t; u) - I(t; v)\} \le I(x; y)$$

4□ > 4□ > 4□ > 4□ > 4□ > 4□

Capacity Results

$$R_{\text{key}} = \max_{t,x} \beta I(t; v) + I(x; y|z)$$

$$t \to u \to v, \quad \beta \{I(t; u) - I(t; v)\} \le I(x; y)$$

- Upper and lower bounds coincide, when channels are degraded or parallel reversely degraded broadcast.
- Capacity for Parallel Gaussian broadcast channels and Gaussian sources
- Extension to side information at the eavesdropper, when sources and channels are degraded.

Conclusions

- Motivating Applications
 - Secure Biometrics
 - Smart-Meter Privacy
 - Wireless Systems
- Information Theoretic Models
 - Wiretap Channel Model
 - Secret-key agreement