ADAPTIVE FILTERING
OUTLINE

* APPLICATIONS OF ADAPTIVE FILTERS
* ADAPTIVE DIRECT FORM F.I.R. FILTERS (LMS, RLS algorithms)
* ADAPTIVE LATTICE - LADDER FILTERS
* PERFORMANCE COMPARISON
ADAPTIVE FILTERS

The statistical characteristics of the signals to be filtered are either unknown a priori or, slowly time variant (non-stationary signals)

* Adaptive beamforming [Widrow et al. (1967)]
* Adaptive noise canceling [Widrow et al. (1975), Hsu and Giordano (1978), Ketsum and Proakis (1982)]
* System modeling/identification, Echo cancellation, Speech coding, etc.
REFERENCES

A few key references from the extensive literature on adaptive filtering are:

* J. Proakis et al., "Advanced Digital Signal Processing" (Macmillan, 1992)

FIR FILTER for adaptive filtering

\[\text{Input} \]

\[2^{-1} \quad 2^{-1} \quad 2^{-1} \quad 2^{-1} \]

\[h(0) \quad h(1) \quad h(2) \quad h(3) \quad h(4) \]

\[\times \quad \times \quad \times \quad \times \quad \times \]

\[\text{Coefficient adjustment} \]

\[\Sigma \rightarrow \text{Output} \]

FIGURE 1 Direct-form adaptive FIR filter.

* Stability of the filter depends on coefficient adjustment algorithm.
* IIR filters suffer from stability problems more often.
* Direct form and lattice form FIR filter structures are common.
OPTIMIZATION CRITERIA

* Very important for efficient adjustment of filter coefficients

* Criterion must be a meaningful measure of filter performance and result in practically realizable algorithms

* The least-squares (LS) and mean-square error (MSE) criteria result in quadratic performance index with a single minimum. They are used widely in practice.
FIGURE 2 Application of adaptive filtering to system identification.

\[\hat{d}(n) = \sum_{k=0}^{M-1} h(k) x(n-k) \]

* \(e(n) = y(n) - \hat{d}(n) \) is an error sequence

* Select \(\xi h(k) \) for \(k=0, ..., M-1 \) to minimize \(\sum_{n=0}^{N-1} |e(n)|^2 \) (LS criterion)
ADAPTIVE CHANNEL EQUALIZATION

![Diagram of adaptive channel equalization](image)

FIGURE 3 Application of adaptive filtering to adaptive channel equalization.

\[
x(n) = \sum_{k=0}^{\infty} a(k) \cdot q(\eta-k) + w(n) = a(n) + \sum_{k=0}^{\infty} a(k) q(\eta-k) + w(n)
\]

true symbol

intersymbol interference (ISI)
Assume that the equalizer filter is an FIR filter with \(M \) adjustable coefficients \(\{ h(n) \}_{n=0}^{M-1} \).

Output of equalizer:
\[
\hat{d}(n) = \sum_{k=0}^{M-1} h(k) x(n-k)
\]

Form the error:
\[
e(n) = d(n) - \hat{d}(n)
\]

where: \(d(n) = a(n+D) \) is the desired true value and \(D \) accounts for delay in the channel.

(Note: \(d(n) = \hat{a}(n) \) after initial convergence is achieved)

Select \(\{ h(n) \}_{n=0}^{M-1} \) to minimize
\[
\sum_{n=0}^{N-1} |e(n)|^2
\]
FIGURE 3. Block diagram model of a digital communication system that used echo cancellers in the modems.

* Echoes due to impedance mismatch between Hybrid A and the channel (near-end echoes)
* Echoes due to impedance mismatch at Hybrid B (far-end echoes)
FIGURE 4. Symbol-rate echo canceller.

- **MODEL 4**

\[
\hat{S}_A(n) = \sum_{k=0}^{N-1} h(k) a(n-k),
\]

* **Error:**
\[
e(n) = d(n) - [r_A(n) - \hat{S}_A(n)],
\]

Minimize
\[
\sum_{n=0}^{N-1} |e(n)|^2
\]
SUPPRESSION OF NARROWBAND INTERFERENCE IN A WIDEBAND SIGNAL (1)

\[|V(f)| = |X(f)| + |W(f)| \]

Figure 5. Strong narrowband interference \(X(f) \) in a wideband signal \(W(f) \).

\[v(n) = x(n) + w(n) \leftarrow \text{not highly correlated.} \]

\[\uparrow \text{Highly correlated} \quad (\text{x(n) and w(n) uncorrelated}) \]
Suppression of Narrowband Interference in a Wideband Signal (2)

\[v(n) = w(n) + x(n) \]

\[e(n) = \hat{w}(n) \]

\[v(n-D) \]

\[z^{-D} \]

\[z^{-1} \]

\[h(0) \]

\[h(1) \]

\[h(2) \]

\[h(M-1) \]

\[\sum_{k=0}^{M-1} h(k) v(n-D-k) \]

Form the error

\[e(n) = v(n) - \hat{x}(n) \]

Obtain \(\{h(k)\} \) for \(k=0, \ldots, M-1 \) by minimizing the LS criterion

\[\sum_{n=0}^{N-1} |e(n)|^2 \]

Fig. 6.
ADAPTIVE DIRECT-FORM FIR FILTERS

From previous examples we observe a common framework in adaptive filter applications.

→ Given,

* the observed (received) data samples \(x(n) \),
* an FIR digital filter with unknown coefficients \(h(n) \) \(n = 0, \ldots, M-1 \)
* A desired response for the filter \(d(n) \)

→ Form the error quantity: \(e(n) = d(n) - \sum_{k=0}^{M-1} h(k) \cdot x(n-k) \)

→ Minimize a function of \(e(n) \) with respect to the \(\{ h(k) \} \).
 (Minimization should be carried out adaptively to accommodate changing signal conditions).
MINIMUM MEAN SQUARE ERROR CRITERION (MMSE)

Minimize the MSE function:

\[J(h_M) = \mathbb{E} \{ |e(n)|^2 \} \]

where, \(h_M = [h(0), ..., h(M-1)]^T \),

\[e(n) = d(n) - \sum_{k=0}^{M-1} h(k) x(n-k) \]

Solution: (\(J(\cdot) \) is a quadratic function of \(h_M \))

\[
\left[\begin{array}{c}
\sum_{k=0}^{M-1} h(k) R_{xx}(e-k) = r_{dx}(e) \end{array} \right] , \ e=0,1,...,M-1
\]

where:

\[R_{xx}(m) = \mathbb{E} \{ x(n)x^*(n-m) \} \], \(r_{dx}(m) = \mathbb{E} \{ d(n)x^*(n-m) \} \]
MMSE criterion (2)

In matrix form the solution is written as:

$$\mathbf{R}_m \cdot \mathbf{h}_m = \mathbf{\sigma}_d$$

(Wiener-Hopf Equation)

where:

$$\mathbf{R}_m = \begin{bmatrix} R(0) & R(-1) & \cdots & R_{xx}(-M+1) \\ R_{xx}(1) & R_{xx}(0) & \cdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ R_{xx}(M-1) & \cdots & R_{xx}(0) \end{bmatrix}, \quad \mathbf{h}_m = \begin{bmatrix} h(0) \\ h(1) \\ \vdots \\ h(M-1) \end{bmatrix}, \quad \mathbf{\sigma}_d = \begin{bmatrix} \sigma_{dx}(0) \\ \sigma_{dx}(1) \\ \vdots \\ \sigma_{dx}(M-1) \end{bmatrix}$$

Autocorrelation Matrix (MxM), Filter coefficients (Mx1), Crosscorrelation Vector (Mx1)
\textbf{MMSE Criterion (3)}

* Optimum solution: \(h_{\text{opt}} = B_M^{-1} \cdot R_d \)

* Minimum mean square error:

\[
J_{\text{min}} = J(h_{\text{opt}}) = E[\|d(n)\|^2] - \sum_{k=0}^{N-1} h_{\text{opt}}(k) R_{dx*}(k)
\]

\[
= 6_d^2 - R_d^H B_M^{-1} R_d
\]

\[
\begin{bmatrix}
* \text{ denotes conjugation} \\
H \text{ denotes conjugate transpose}
\end{bmatrix}
\]

* \(B_M \) is Hermitian and Toeplitz: Efficient solutions exist.
LEAST SQUARES CRITERION (LS)

Minimize the least-squares function

$$J_{ls}(h_m) = \frac{1}{2} \sum_{n=0}^{N-1} |e(n)|^2$$

where, h_m and $e(n)$ are as before.

SOLUTION: ($J_{ls}(...)$ is also a quadratic function of h_m)

$$[\sum_{k=0}^{M-1} h(k) \cdot \hat{R}_{xx}(l-k) = \hat{r}_{dx}(l+D), \quad l=0,1,...,M-1]$$

where:

$$\hat{R}^{(m)}_{xx} = \frac{1}{N} \sum_{n=0}^{N-1} x(n) x^*(n-m) \quad \hat{r}^{(m)}_{dx} = \frac{1}{N} \sum_{n=0}^{N-1} d(n)x^*(n-m)$$
MMSE and LS Criteria

* The solutions obtained from both criteria are similar in form.

* In MMSE, the true statistical autocorrelation and cross-correlation are employed. The optimum (Wiener) filter coefficients are obtained.

* In LS, estimates of the autocorrelation and cross-correlation are used. The underlying assumption is that the observed data sequence is stationary and ergodic. Estimates of the optimum filter coefficients are obtained.
Consider the recursive algorithm

\[h_{m}(n+1) = h_{m}(n) + \frac{1}{2} \mu(n) D(n) \quad , \quad n=0,1, \ldots \]

where:
- \(h_{\eta}(n) \) the vector of filter coefficients at iteration \(\eta \)
- \(\mu(n) \) is a step size at iteration \(\eta \)
- \(D(n) \) iteration vector at iteration \(\eta \).

SPECIAL CASE: Steepest-descent methods (gradient methods)

\[
D(n) = - \frac{d \mathcal{S}(h_{m}(n))}{d h_{m}(n)} = 2 \left[r_{d} - B_{m} h_{m}(n) \right].
\]

Thus:

\[
\left[h_{m}(n+1) = h_{m}(n) + \mu(n) \left[r_{d} - B_{m} h_{m}(n) \right] \right] \quad , \quad n=0,1, \ldots
\]
By substituting, \(\mathbf{\Sigma}_d = \mathbb{E}\{d(n)X_M^*(n)\} \), \(\mathbf{B}_M = \mathbb{E}\{X_M^*(n)X_M^T(n)\} \)

where \(X_M(n) = [x(n), x(n-1), \ldots, x(n-M+1)]^T \)

we obtain:

\[
\hat{h}_M(n+1) = \hat{h}_M(n) + \mu(n) \cdot \mathbb{E}\{X_M^*(n) [d(n) - X_M^T(n) \hat{h}_M(n)] e(n) \}
\]

Thus:

\[
\hat{h}_M(n+1) = \hat{h}_M(n) + \mu(n) \cdot \mathbb{E}\{e(n)X_M^*(n)\}, \quad n=0,1,\ldots
\]

* It can be shown that the above algorithm converges provided \(\mu(n) \) is properly chosen.

* Adaptation stops when \(\mathbb{E}\{e(n)X_M^*(n)\} = 0 \) (orthogonality principle)
The Least-Mean-Squares (LMS) Algorithm

* In practice, the term $E\sum e(n)X^*_M(n)$ is replaced by an estimate.

* A simple unbiased estimate is obtained by dropping the expectation operation.

* In practice, the step size $\mu(n)$ is fixed to a constant value $\mu > 0$.

Thus,

\[
LMS: \quad h_M(n+1) = h_M(n) + \mu \cdot e(n) \cdot X^*_M(n), \quad n=0,1,\ldots
\]

(Various variations of the LMS algorithm exist in the literature.)
PROPERTIES OF THE LMS ALGORITHM

- The rate of convergence depends on the following:
 1) Step size μ: The higher the value of μ, the faster the convergence. The higher the value of μ, the higher the final mean square error achieved by the algorithm.
 2) Eigenvalue spread of B_m: The larger the eigenvalue spread, the slower the convergence.

- There is a trade-off between convergence speed and final mean square error.

- The algorithm is stable provided
 \[0 < \mu < \frac{2}{\lambda_{\text{max}}} \]
 where λ_{max} is the largest eigenvalue of B_m.
Properties of the LMS Algorithm (2)

- In practice choose: \(0 < \mu < \frac{1}{\left(X_M^T X_M\right)^{-1} \sum_{k=0}^{N} |x(n-k)|^2} \)

- In nonstationary signal environments (slowly time varying), the final mean-square error achieved is

\[J_{\text{total}}(n) = J_{\text{min}}(n) + J_\mu(n) + J_e(n) \]

- \(J_\mu(n) \): Gradient noise error
- \(J_e(n) \): Lag error
FIGURE 9. Learning curves for the LMS algorithm applied to an adaptive equalizer of length $M = 11$ and a channel with eigenvalue spread $\lambda_{\text{max}}/\lambda_{\text{min}} = 11$.

- $\mu = 0.045$
- $\mu = 0.09$
- $\mu = 0.115$
SUMMARY OF THE LMS ALGORITHM.

Parameters:
- \(M = \text{number of taps} \)
- \(\mu = \text{step size} \)
\[0 < \mu < \frac{2}{\sum_{i=0}^{M} |x(n-i)|^2} \]

Initial Conditions:
\(h_M(0) = 0 = [0, 0, \ldots, 0]^T \)

Data:
\(X_M(n) = [x(n), x(n-1), \ldots, x(n-M+1)]^T \)

\(d(n) : \text{desired response.} \)

\(h_M(n) = [h(0,n), h(1,n), \ldots, h(M-1,n)]^T \)

Computation:
For \(n = 0, 1, 2, \ldots \) compute

\[e(n) = d(n) - X_M^T(n) h_M(n) \]

\[h_M(n+1) = h_M(n) + \mu \cdot e(n) \cdot X_M^*(n) \]

Given an FIR filter with coefficients

\[h_M(n) = [h(0,n), h(1,n), \ldots, h(M-1,n)]^T \]

and the data vector

\[\hat{X}_M(n) = [x(n), x(n-1), \ldots, x(n-M+1)]^T \]

Suppose we observe the vectors: \(\hat{X}_M(l), l=0,1,2,\ldots,n \) and we wish to determine the filter coefficients vector \(h_M(n) \) that minimizes the weighted sum of magnitude-squared errors:

\[
\mathcal{E}_M = \sum_{l=0}^{n} w^{n-l} |e_m(l,n)|^2
\]

where, \(e_m(l,n) = d(l) - \hat{d}(l) \) and \(w \) is a forgetting factor.
RLS ESTIMATION (2)

Minimization of E_M with respect to the $h_M(n)$ yields

$$B_M(n) \cdot h_M(n) = D_M(n)$$

where,

$$B_M(n) = \sum_{l=0}^{n} w^{n-l} X_M^*(l) X_M^T(l)$$

$$D_M(n) = \sum_{l=0}^{n} w^{n-l} X_M^*(n) \cdot d(l)$$

Solution:

$$\begin{bmatrix} h_M(n) = B_M^{-1} D_M(n) \end{bmatrix}$$
RLS ESTIMATION (3)

Suppose we have the optimum solution at time \(n-1 \) and we wish to compute \(\tilde{h}(n) \). Recursive solution

\[R_{M}(n) = w R_{M}(n-1) + X_{M}^{*}(n) X_{M}^{T}(n) \]

\[D_{M}(n) = w D_{M}(n-1) + X_{M}^{*}(n) \cdot d(n) \]

* TIME UPDATE EQUATIONS

* MATRIX INVERSION LEMMA

\[R^{-1}_{M}(n) = \frac{1}{w} \left[R^{-1}_{M}(n-1) - \frac{R^{-1}_{M}(n-1) \cdot X_{M}^{*}(n) X_{M}^{T}(n) R^{-1}_{M}(n-1)}{w + X_{M}^{T}(n) R^{-1}_{M}(n-1) X_{M}^{*}(n)} \right] \]
Let $P_M(n) = R_M^{-1}(n)$, and

$$K_M(n) = \frac{P_M(n-1) \Delta_M(n)}{w^T X_M(n) P_M(n-1) X_M^T(n)}$$

(Kalman Gain vector)

Then,

$$h_M(n) = P_M^{-1}(n) \cdot D_M(n) = P_M(n) \cdot D_M(n) = \ldots \ldots$$

$$= \frac{P_M(n-1) D_M(n-1)}{h_M(n-1)} + K_M(n) \left[d(n) - X_M^*(n) \cdot h_M(n) \right]$$

$$e_M(n)$$

or

$$h_M(n) = h_M(n-1) + K_M(n) e_M(n)$$
It can be shown that $K_M(n) = P_M(n)X_M^*(n)$.

By substituting into RLS recursion equation,

$$h_M(n) = h_M(n-1) + P_M(n)X_M^*(n)e_M(n)$$

Note that for the LMS algorithm we found

$$h_M(n) = h_M(n-1) + \mu X_M^*(n)e_M(n)$$
RLS Algorithm

1) Compute the filter output:
 \[\hat{d}(n) = X_M^T(n) h_M(n-1) \]

2) Compute the error:
 \[e_M(n) = d(n) - \hat{d}(n) \]

3) Compute the gain vector:
 \[K_M(n) = \frac{P_M(n-1) X_M^*(n)}{w^T X_M^T(n) P_M(n) X_M^*(n)} \]

4) Update the inverse of the autocorrelation matrix:
 \[[P_M(n-1) - K_M(n) X_M^*(n) P_M(n-1)] \]

5) Update the coefficient vector of the filter:
 \[h_M(n) = h_M(n-1) + K_M(n) e_M(n) \]
FIGURE 10 Learning curves for RLS algorithm and LMS algorithm for adaptive equalizer of length $M = 11$. The eigenvalue spread of the channel is $\lambda_{\text{max}}/\lambda_{\text{min}} = 11$. The step size for the LMS algorithm is $\Delta = 0.02$. (From Digital Communication by John G. Proakis. © 1983 by McGraw-Hill Book Company.)
RLS algorithm

Limitations: → Complexity \(\sim M^3 \)

→ Stability of the algorithm requires high precision arithmetic (24 bits or more)
 (Computation of \(P_m(n) \))

Potential Solution:

Use a square-root RLS algorithm based on LDU decomposition of \(P_m(n) \) or \(P_m(n) \).