Secure Information Aggregation for Smart Grids using Homomorphic Encryption
Fengjun Li, Bo Luo, Peng Liu

PRESENTER: EMAN HAMMAD

Submitted in Partial Fulfillment of the Course Requirements for
ECEN 689: Cyber Security of the Smart Grid
Instructor: Dr. Deepa Kundur
Outline

- Motivation, approach
- Related works
- Background:
 - Homomorphic Encryption
 - Honest-but-curious Model
- Secure Information Aggregation
- Example
- Analysis and discussion
- Personal insight and assessment
- References
Motivation, approach

- Instant aggregation of power usage data:
 - At different levels: Neighborhood, subdivision, district, city, etc., and at different frequencies.

- Essential for:
 - Monitoring and predicting power consumption.
 - Allocating and balancing loads and resources.
 - Administering power generation, etc.

- Goal: efficient and secure data aggregation for smart grids.

- Approach:
 - In-network distributed aggregation.
 - Homomorphic encryption.
Related Works

- Various in-network data aggregation approaches:
 - For sensor networks, sensors are limited by battery and resources.
 - Sensors in the network are usually trusted, and security is against eavesdroppers and tampering attacks using fake inputs.

- Smart Grids:
 - Power of the smart meter is not a concern, but communication bandwidth is, specially when frequent aggregation is required.
 - Power usage is considered a privacy of the user.

 *Traditional tree-based aggregation on plaintext does not apply.
Background: Homomorphic Encryption

Homomorphic encryption:
- A form of encryption where specific algebraic operation performed on the plaintext is equivalent to another (possibly different) algebraic operation performed on the ciphertext.
- Given a homomorphic encryption function $E()$, and two messages $x, y \in Z_N$

$$E_k(x \star y) = E_{k1}(x) \circ E_{k2}(y)$$

Without knowing the plaintext x, y or the private key.
- Used for privacy-preserving operations, voting.
- Known schemes: RSA, El Gamal, Paillier, Naccache-Stern, BGN etc.
- Paper adopts Paillier scheme.
Homomorphic encryption

- Paillier cryptosystem:
 - Invented in 1999 by Pascal Pailier.
 - Has additive homomorphic property.
 - Given only the public-key and the encryption of m_1 and m_2, one can compute the encryption of $m_1 + m_2$. \[2\]
 - Indeterministic:
 - the same message will be encrypted into different ciphers using different random blinding factors.
Background: Honest-but-curious Model

- Honest-but-curious model:
 - All parties are assumed to follow protocol properly “honest”.
 - Keep all inputs from other parties and all intermediate computation results “curious”.

- Honest-but-curious smart meters:
 - Do not tamper with the aggregation protocols
 - Do not drop or distort any source value or intermediate result.
 - Will try to infer others’ electricity usage from messages routed through them
Secure Information Aggregation

- **Smart Grid Communication Infrastructure:**
 - Most popular: *wireless-wired* multi-layer architecture.
 - Wireless: smart meters in a neighborhood communication with a collector device.
 - Wired: collector device with the rest of the grid.
Secure Information Aggregation

- **Data Aggregation**: important type of query in Smart Grids.
 - Example: average power usage of the neighborhood.
 - Traditionally: every smart meter establishes a connection with the collector and uses it exclusively to report its data.
 - Excessive network traffic.
 - Overwhelming demands at the collectors.
Secure in-network incremental aggregation

- **Approach:**
 - Establish an aggregation tree.
 - Enroute meters to share the channel.
 - **Ensure privacy** using homomorphic encryption.
 - With reasonable computation overhead.
The Aggregation Tree

- To enable in-network Aggregation:
 - Aggregation path:
 - All smart meters in the neighborhood.
 - For each aggregation task:
 - All or subset of nodes on the aggregation path participate.
The Aggregation Tree

- Considering the smart meter network as a graph:
 - Graph $G(V, E)$:
 - V, set of smart meters (vertices).
 - E, set of available wireless links (edges) between any two smart meters.
 - Graph should be connected; every smart meter should have at least one communication path to the collector.
The Aggregation Tree (cont.)

- The Aggregation Tree:
 - A spanning tree of the graph with minimal subset of E that connects all the vertices.
 - Always roots at the collector node; which initializes all aggregation tasks and collects the results.
 - Aggregation is recursively calculated in a bottom-up manner; every node takes input from itself and its children nodes, aggregate the data and sends the result to its parent node.

- Collector device:
 - Has the network graph of the entire neighborhood.
 - The aggregation tree is constructed locally at the collector.
 - An aggregation tree remains valid for an extended period of time.
Constructing the Aggregation Tree

- Algorithm goals:
 - Height of the tree should be small.
 - An interior node should not have too many children, to avoid excessive computation and communication load.

- Approach:
 - Breadth-first traversal of the graph, starting at the collector node.
 - If node K has too many children rebalance the three.
 - If a child of K is connected to a less populated sibling of K, move child to that sibling (will not increase the height of the tree).
 - If K still has too many children, check if a child is also connected to another child of K, and move it to that child (may increase the height of the tree).
Example: constructing the Aggregation Tree

Aggregation tree constructed from the graph

Breadth-first traversal of the network graph
In-network aggregation using homomorphic encryption

- Having the aggregation tree:
 - Construct operation plans for participating nodes (smart meters).
 - Deploy the operation plans in a top-down manner.
In-network aggregation using homomorphic encryption

- An operation plan for a smart meter:

\[\{T_{ID}, \text{Trigger}, \text{Data}, \text{Collect}, \text{Operation}, \text{Destination}, \text{Key}\} \]

- \(T_{ID} \), arbitrary unique identifier to identify message.
- \text{Trigger}, defines when the aggregation will be conducted; periodically, upon collector request, or at a particular time. Time of local data reading, important in time-sensitive tasks.
- \text{Data}, what information from the local smart grid will be collected in the aggregation.
- \text{Collect}, tells a smart meter to wait for input from its children in the aggregation.
- \text{Operation}, what operation to be performed; pre-processing, encryption and operations for aggregation.
- \text{Destination}, the parent node, to whom the output from \text{Operation} will be submitted.
- \text{Key}, a public key from the collector to be used to encrypt the local data.
In-network aggregation using homomorphic encryption

- **Output message from a participating node:**
 - Is constructed as:
 \[\{T_{ID}, TS, Data\} \]
 - Where \(TS \) is the timestamp of local data retrieval. This timestamp is used for synchronizing different occurrences of repeating tasks.
Examples

- Example:
 - To calculate the total output power (KW) at time t_0 in the entire neighborhood:
 - Aggregation plan at node 9 is:
 \(\{tid, t_0, power, \{N_5, N_8\}, Enc_K(power) \times I_5 \times I_8, N_{11}, K\} \)
 - When node 9 receives the aggregation plan:
 1. It retrieves its own power at t_0.
 2. It encrypts the reading with K to get local input $C_{p9} = E_K(P_9)$.
 3. Node 9 then waits for input from nodes 5,8.
 4. After receiving C_{05}, C_{08}, node 9 calculates $C_{09} = C_{p9} \times C_{05} \times C_{08}$.
 5. Node 9 submits C_{09} to Node 11.
Analysis

• Comparing:
 - The in-network aggregation with homomorphic encryption to traditional aggregation approach.

 ○ Network:
 - **Traditional**: messages from all smart meters are routed to collector simultaneously. Let \bar{h} be the average number of hops for each message to the collector, assuming number of nodes to be N, total load on the network will be $\bar{h} \times N$.
 - **In-network** aggregation, total load will be N hops.
Analysis (cont.)

- Scalability, bottleneck and robustness:
 - Overall scalability highly depends on the smart meter network topology.
 - In-network aggregation:
 - For a well designed network, the aggregation tree will be wide and shallow. The longest path in an aggregation process is the graph diameter, grows at \sqrt{N}.
 - Almost no bottleneck in the in-network aggregation; since most computations are distributed, and also with the rebalance scheme.
 - If one start meter fails, failure is detected immediately by its parent in aggregation and reported to the collector, the collector updates the aggregation tree and re-issues the query.
Analysis (cont.)

- Security and privacy analysis:
 - The Paillier cryptosystem:
 - Semantically secure: polynomial time adversary who intercepts communication cannot derive significant information about the plaintext from the ciphers and public key.
 - Resilient to dictionary attacks; based on the use of the blinding factor r, same data will be encrypted to different ciphers with different r.
 - WARNING: all homomorphic encryption systems are malleable; given cipher and public key, an adversary could generate another cipher that decrypts to another meaningful plaintext in the same domain as the original plaintext. Hence, a dishonest meter or fake meter could falsify its data causing inaccurate aggregation result. NOT considered by in-network aggregation, can be solved by increasing physical and software security of smart meters.
Analysis (cont.)

- **Computation:**
 - Asymmetric encryption (homomorphic encryption):
 - Is more computationally expensive than symmetric encryption (AES and triple-DES).
 - Traditional (symmetric):
 - Each smart meter encrypt its message, collector to decrypt N messages.
 - In-network aggregation:
 - Each smart meter encrypt its message once, and the collector decrypts one message (result of aggregation).
 - Distributes the computation of the aggregation from collector to intermediate smart meters (with low overhead).
Personal assessment

- Authors **successfully** extend aggregation concepts from sensor networks into a smart grid framework, carefully handling smart grid issues (smart meters, privacy, etc).

- Authors **fully understand the pros and cons** of their proposed system, and include future research plans to cover the shortcomings.

- Authors **did not provide a quantitative simulation** results that show the gains in savings of computation, and the actual implementation a real smart grid system/subsystem.

- The proposed solution **does not handle the Integrity** aspect in the C-I-A security framework, since authors tried to carefully limit any overhead computations, yet this should be looked at.
References